

Lecture 4b. Image Processing

Agenda

- ▶ Convolutional Neural Networks
- Why training Deep Neural Networks is hard?
- \triangleright DNN training strategy
- \triangleright Transfer Learning
- \triangleright Overfitting and Underfitting
- \triangleright Methods to avoid overfitting
	- \triangleright Data Augmentation
	- \triangleright Regularization
- \triangleright Data Preprocessing
- \triangleright Batch Normalization
- \triangleright Choice of optimizers
- \triangleright Tuning DNNs hyperparameters
- \triangleright Neural Style Transfer

Convolutional Neural Networks (CNNs)

- \triangleright A class of deep neural networks suitable for processing 2D/3D data. For e.g., Images and Videos
- \triangleright CNNs can capture high-level representation of images/videos which can be used for endtasks such as classification, object detection, segmentation, etc.
- \triangleright A range of CNNs improving over the years

History

- \triangleright ImageNet (2009)
	- \triangleright Consists of 14 million images, more than 21,000 classes, and about 1 million images have bounding box annotations
	- Annotated by humans using crowdsourcing platform "Amazon Mechanical Turk"

- ▶ ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
	- \triangleright annual competition to foster the development and benchmarking of state-of-the-art algorithms in Computer Vision
	- \triangleright Led to improvement in architectures and techniques at the intersection of CV and DL

LeNet

- \triangleright First developed by Yann Lecun in 1989 for digit recognition
	- \triangleright First time backprop is used to automatically learn visual features
	- \triangleright Two convolutional layers, three fully connected layers (32 x 32 input, 6 and 12 FMs, 5 x 5 filters)
	- \triangleright Stride = 2 is used to reduce image dimensions
	- \triangleright Scaled tanh activation function
	- \triangleright Uniform random weight initialization

AT&T

answer:

103

 $LeNet 5$ RESEARCH

- 0

CNN Architectures

- \triangleright AlexNet, 8 layers (2012)
- \triangleright VGG, 19 layers (2014)
- GoogleNet, 22 layers (2014)
- \triangleright ResNets, 152 layers (2015)
- DenseNet, 201 layers (2017)
- \triangleright EfficientNet (2019)
- \triangleright EfficientNetV2 (2021)

AlexNet

- \triangleright 650K neurons
- **► 630M connections**
- \triangleright 60M parameters

more parameters than images -------> danger of overfitting

Enhancements

- ▶ Rectified Linear Units (ReLUs)
- \triangleright Overlapping pooling (Width = 3, stride = 2)
- \triangleright Stochastic gradient descent with momentum and weight decay
- \triangleright Data augmentation to reduce overfitting
- \geq 50% dropout in the fully connected layers

Dealing with Deep Networks

\geq > 10 layers

- \triangleright weight initialization
- \triangleright batch normalization

\triangleright > 30 layers

 \triangleright skip connections

$>$ 100 layers

 \triangleright identity skip connections

Statistics Example: Coin Tossing

Example: Toss a coin once, and count the number of Heads

 $=\frac{1}{2}(0+1) = 0.5$ Mean μ $=\frac{1}{2}((0-0.5)^2+(1-0.5)^2)=0.25$ Variance Standard Deviation $\sigma = \sqrt{Variance} = 0.5$

Example: Toss a coin 100 times, and count the number of Heads

Mean $= 100 * 0.5 = 50$ μ Variance $= 100 * 0.25 = 25$ Standard Deviation $\sigma = \sqrt{\text{Variance}} = 5$

Example: Toss a coin 10000 times, and count the number of Heads

$$
\mu = 5000
$$
, $\sigma = \sqrt{2500} = 50$

Statistics

The mean and variance of a set of *n* samples x_1, \ldots, x_n are given by

Mean[x] =
$$
\frac{1}{n} \sum_{k=1}^{n} x_k
$$

Var[x] = $\frac{1}{n} \sum_{k=1}^{n} (x_k - \text{Mean}[x])^2 = \left(\frac{1}{n} \sum_{k=1}^{n} x_k^2\right) - \text{Mean}[x]^2$

If w_k , x_k are independent and $y = \sum_{k=1}^{n} w_k x_k$ then

 $Var[y] = nVar[w]Var[x]$

Consider one layer (i) of a deep neural network with weights $w_{ik}^{(i)}$ connecting the activations $\{x_k^{(i)}\}_{1 \leq k \leq n_i}$ at the previous layer to ${x_i^{(i+1)} \}_{1 \leq j \leq n_{i+1}}$ at the next layer, where $g()$ is the transfer function and

$$
x_j^{(i+1)} = g(\operatorname{sum}_j^{(i)}) = g\left(\sum_{k=1}^{n_i} w_{jk}^{(i)} x_k^{(i)}\right)
$$

Then

$$
\text{Var}[\text{sum}^{(i)}] = n_i \text{Var}[w^{(i)}] \text{Var}[x^{(i)}]
$$

$$
\text{Var}[x^{(i+1)}] \simeq G_0 n_i \text{Var}[w^{(i)}] \text{Var}[x^{(i)}]
$$

Where G_0 is a constant whose value is estimated to take account of the transfer function.

If some layers are not fully connected, we replace n_i with the average number n_i^{in} of incoming connections to each node at layer $i+1$.

If the nework has D layers, with input $x = x^{(1)}$ and output $z = x^{(D+1)}$, then

$$
\text{Var}[z] \simeq \Big(\prod_{i=1}^{D} G_0 n_i^{\text{in}} \text{Var}[w^{(i)}]\Big) \text{Var}[x]
$$

When we apply gradient descent through backpropagation, the differentials will follow a similar pattern:

$$
\text{Var}\left[\frac{\partial}{\partial x}\right] \simeq \Big(\prod_{i=1}^{D} G_1 n_i^{\text{out}} \text{Var}[w^{(i)}]\Big) \text{Var}\left[\frac{\partial}{\partial z}\right]
$$

In this equation, n_i^{out} is the average number of outgoing connections for each node at layer i, and G_1 is meant to estimate the average value of the derivative of the transfer function.

For Rectified Linear Units, we can assume $G_0 = G_1 = \frac{1}{2}$

In order to have healthy forward and backward propagation, each term in the product must be approximately equal to 1. Any deviation from this could cause the activations to either vanish or saturate, and the differentials to either decay or explode exponentially.

$$
\text{Var}[z] \simeq \left(\prod_{i=1}^{D} G_0 n_i^{\text{in}} \text{Var}[w^{(i)}]\right) \text{Var}[x]
$$

$$
\text{Var}[\frac{\partial}{\partial x}] \simeq \left(\prod_{i=1}^{D} G_1 n_i^{\text{out}} \text{Var}[w^{(i)}]\right) \text{Var}[\frac{\partial}{\partial z}]
$$

We therefore choose the initial weights $\{w_{jk}^{(i)}\}$ in each layer (*i*) such that $G_1 n_i^{\text{out}} \text{Var}[w^{(i)}] = 1$

22-layer ReLU network (left), $Var[w] = \frac{2}{n}$ converges faster than $Var[w] = \frac{1}{n}$

30-layer ReLU network (right), Var[w] = $\frac{2}{n}$ is successful while Var[w] = $\frac{1}{n}$ fails to learn at all

Batch Normalization

We can normalize the activations $x_k^{(i)}$ of node k in layer (i) relative to the mean and variance of those activations, calculated over a mini-batch of training items:

$$
\hat{x}_k^{(i)} = \frac{x_k^{(i)} - \text{Mean}[x_k^{(i)}]}{\sqrt{\text{Var}[x_k^{(i)}]}}
$$

These activations can then be shifted and re-scaled to

$$
y_k^{(i)} = \beta_k^{(i)} + \gamma_k^{(i)} \hat{x}_k^{(i)}
$$

 $\beta_k^{(i)}$, $\gamma_k^{(i)}$ are additional parameters, for each node, which are trained by backpropagation along with the other parameters (weights) in the network. After training is complete, Mean $[x_k^{(i)}]$ and Var $[x_k^{(i)}]$ are either pre-computed on the entire training set, or updated using running averages.

Going Deeper

 \triangleright If we simply stack additional layers, it can lead to higher training error as well as higher test error

Residual Networks

 \triangleright Idea: Take any two consecutive stacked layers in a deep network and add a "skip" connection which bypasses these layers and is added to their output.

Residual Networks

- the preceding layers attempt to do the "whole" job, making *x* as close as possible to the target output of the entire network
- $F(x)$ is a residual component which corrects the errors from previous layers, or provides additional details which the previous layers were not powerful enough to compute
- \triangleright With skip connections, both training and test error drop as you add more layers
- \triangleright With more than 100 layers, need to apply ReLU before adding the residual instead of afterwards. This is called an identity skip connection.

Dense Networks

 \triangleright Good results have been achieved using networks with densely connected blocks, within which each layer is connected by shortcut connections to all the preceding layers.

VGG

- Developed at Visual Geometry Group (Oxford) by Simonyan and Zisserman
- \triangleright 1st runner up (Classification) and Winner (localization) of ILSVRC 2014 competition

Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

Pool

11 conv. Input

AlexNet

- \triangleright VGG-16 comprises of 138 million parameters
- \triangleright VGG-19 comprises of 144 million parameters

GoogLeNet

- \triangleright A 22-layer CNN developed by researchers at Google
- \triangleright Deeper networks prone to overfitting and suffer from exploding or vanishing gradient problem
- Core idea "Inception module"
- \triangleright Adding Auxiliary loss as an extra supervision
- Winner of 2014 ILSVRC Challenge

ResNet

- ▶ Developed by researchers at Microsoft
- \triangleright Core idea "residual connections" to preserve the gradient
- \triangleright The identity matrix transmits forward the input data that avoids the loose of information (the data vanishing problem)

DenseNet

- \triangleright In a DenseNet architecture, each layer is connected to every other layer, hence the name Densely Connected Convolutional Network
- \triangleright For each layer, the feature maps of all the preceding layers are used as inputs, and its own feature maps are used as input for each subsequent layers
- \triangleright DenseNets have several compelling advantages:
	- \triangleright alleviate the vanishing-gradient problem
	- \triangleright strengthen feature propagation
	- \triangleright encourage feature reuse, and
	- \triangleright substantially reduce the number of parameters.

SENet (Squeeze-and-Excitation Network)

- \triangleright CNNs fuse the spatial and channel information to extract features to solve the task
- \triangleright Before this, networks weights each of its channels equally when creating the output feature maps
- \triangleright SENets added a content aware mechanism to weight each channel adaptively
- \triangleright SE block helps to improve representation power of the network, able to better map the channel dependency along with access to global information

Why training Deep Neural Networks is hard?

Why training Deep Neural Networks is hard?

READER

Training Methodology

 \triangleright steps

Transfer Learning

- \triangleright Transfer learning aims to leverage the learned knowledge from a resource-rich domain/task to help learning a task with not sufficient training data.
	- \triangleright Sometimes referred as domain adaptation
- The resource-rich domain is known as the source and the low-resource task is known as the target.
- \triangleright Transfer learning works the best if the model features learned from the source task are general (i.e., domain-independent)

Transfer Learning with CNNs

1. Train on Imagenet

2. Small Dataset (C classes)

Transfer Learning with CNNs

13.

Transfer Learning is common in all applications

Overfitting and Underfitting

- \triangleright Monitor the loss on training and validation sets during the training iteration.
- \triangleright If the model performs poorly on both training and validation sets: Underfitting
- \triangleright If the model performs well on the training set compared to the validation set: Overfitting

Common methods to mitigate overfitting

- \triangleright More training data
- \triangleright Early Stopping
- \triangleright Data Augmentation
- \triangleright Regularization (weight decay, dropout)
- \triangleright Batch normalization

More training data

- \triangleright Costly
- \triangleright Time consuming
- \triangleright Need experts for specialized domains

Source: Fast Annotation Net: A framework for active learning in 2018. <https://medium.com/diffgram/fast-annotation-net-a-framework-for-active-learning-in-2018-1c75d6b4af92> 35 Image Datasets — ImageNet, PASCAL, TinyImage, ESP and LabelMe — what do they offer ? Medium Blog

Early Stopping

- \triangleright Training too little mean model will underfit on the training and testing sets
- \triangleright Training too much mean model will overfit the training dataset and hence poor performance on test set
- \triangleright Early Stopping:
	- \triangleright To stop training at the point when performance on a validation set starts to degrade.
	- \triangleright Idea is to stop training when generalization error increases
- \triangleright How to use Early Stopping
	- Monitoring model performance: Using metric to evaluate to monitor performance of the model during training
	- \triangleright Trigger to stop training:
		- \triangleright No change in metric over a given number of epochs
		- \triangleright A decrease in performance observed over a number of epochs
	- \triangleright Some delay or "patience" is good for early stopping

- Data augmentation generate different versions of a real dataset artificially to increase its size
- We use data augmentation to handle data scarcity and insufficient data diversity
- \triangleright Data augmentation helps to increase performance of deep neural networks
- \triangleright Common augmentation techniques:
	- \triangleright Adding noise
	- \triangleright Cropping
	- \triangleright Flipping
	- \triangleright Rotation
	- \triangleright Scaling
	- \triangleright Translation
	- \triangleright Brightness
	- **≻** Contrast
	- \triangleright Saturation
	- Generative Adversarial Networks (GANs)

\triangleright Adding noise

 \triangleright Cropping

\triangleright Flipping

 \triangleright Rotation

 \triangleright Scaling

《书】

\triangleright Translation

> Brightness

≻ Contrast

第1

Generative Adversarial Networks (GANs) for data augmentation

StyleGAN2 (baseline)

StyleGAN2 + DiffAugment (ours)

Regularization: Weight Decay

- \triangleright It adds a penalty term to the loss function on the training set to reduce the complexity of the learned model
- \triangleright Popular choice for weight decay:
	- \triangleright L1: The L1 penalty aims to minimize the absolute value of the weights

$$
L(x, y) \equiv \sum_{i=1}^{n} (y_i - h_{\theta}(x_i))^2 + \lambda \sum_{i=1}^{n} |\theta_i|
$$

 \triangleright L2: The L2 penalty aims to minimize the squared magnitude of the weights

$$
L(x,y) \equiv \sum_{i=1}^{n} (y_i - h_{\theta}(x_i))^2 + \lambda \sum_{i=1}^{n} \theta_i^2
$$

Regularization: Dropout

- \triangleright L1 and L2 reduce overfitting by modifying the cost function
- \triangleright Dropout modify the network by randomly dropping neurons from the neural network during training
- \triangleright Dropout is an efficient way to average many large neural networks

Data Preprocessing

- \triangleright The pixel values in images must be scaled prior to given as input to deep neural networks for training or evaluation
- \triangleright Three main types of pixel scaling:
	- \triangleright Pixel Normalization: scale pixel values to the range 0-1
	- \triangleright Pixel Centering: scale pixel values to have a zero mean
	- ▶ Pixel Standardization: scale pixel values to have a zero mean and unit variance

Batch Normalization

- \triangleright Enables stable training
- \triangleright Reduces the internal covariate shift (ICS)
- \triangleright Accelerates the training process

Choice of Optimizers

- \triangleright Choosing right optimizer helps to update the model parameters and reducing the loss in much less effort
- \triangleright Most DL frameworks supports various optimizers:
	- ▶ Stochastic Gradient Descent (SGD)
	- **≻** Momentum
	- ▶ Nesterov Accelerated Gradient
	- **≻** AdaGrad
	- \triangleright AdaDelta
	- \triangleright Adam
	- **≻** RMSProp

Tuning Hyperparameters

- \triangleright Hyperparameters are all parameters which can be arbitrarily set by the user before starting training
- \triangleright Hyperparameters are like knobs or dials of the network (model)
- \triangleright An optimization problem: We aim to find the right combinations of their values which can help us to find either the minimum (e.g., loss) or the maximum (e.g., accuracy) of a function
- \triangleright Many hyperparameters to tune:
	- \triangleright Learning rate
	- \triangleright No. of epochs
	- \triangleright Dropout rate
	- \triangleright Batch size

…

- \triangleright No. of hidden layers and units
- \triangleright Activation function
- \triangleright Weight initialization

Tuning Hyperparameters strategies

- \triangleright Random Guess
	- \triangleright Simply use values from similar work
- \triangleright Rely on your experience
	- \triangleright Training DNNs is part art, part science
	- \triangleright With experience sense of what works and what doesn't
	- Still chances of being incorrect (suboptimal performance)
- **≻** Grid Search
	- \triangleright Set up a grid of hyperparameters and train/test model on each of the possible combinations
- \triangleright Automated hyperparameter tuning
	- \triangleright Use of Bayesian optimization and Evolutionary Algorithms
	- Hyperopt: Distributed Asynchronous Hyperparameter Optimization

Deep Learning Frameworks

Texture

- \triangleright Texture is a repeating pattern of local variations in image intensity
- \triangleright Texture provides information in the spatial arrangement of colors or intensities in an image.
- \triangleright Texture is characterized by the spatial distribution of intensity levels in a neighborhood.

Texture Images Showing Local Entropy, Local Standard Deviation, and Local Range

Texture Synthesis

Neural Texture Synthesis

- 1. pretrain CNN on ImageNet (VGG-19)
- 2. pass input texture through CNN; compute feature map F_{ik}^l for i^{th} filter at spatial location k in layer (depth) l
- 3. compute the Gram matrix for each pair of features

$$
G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l
$$

- 4. feed (initially random) image into CNN
- 5. compute L2 distance between Gram matrices of original and new image
- 6. backprop to get gradient on image pixels
- 7. update image and go to step 5.

Neural Texture Synthesis

We can introduce a scaling factor w_l for each layer l in the network, and define the Cost function as

$$
E_{\rm style} = \frac{1}{4} \sum_{l=0}^{L} \frac{w_l}{N_l^2 M_l^2} \sum_{i,j} (G_{ij}^l - A_{ij}^l)^2
$$

where N_l , M_l are the number of filters, and size of feature maps, in layer l, and G_{ij}^l , A_{ij}^l are the Gram matrices for the original and synthetic image.

Neural Style Transfer

Content $+$ Style \rightarrow New image

Neural Style Transfer

Neural Style Transfer

For Neural Style Transfer, we minimize a cost function which is

$$
E_{\text{total}} = \alpha E_{\text{content}} + \beta E_{\text{style}}
$$

= $\frac{\alpha}{2} \sum_{i,k} ||F_{ik}^{l}(x) - F_{ik}^{l}(x_c)||^2 + \frac{\beta}{4} \sum_{l=0}^{L} \frac{w_l}{N_l^2 M_l^2} \sum_{i,j} (G_{ij}^{l} - A_{ij}^{l})^2$

where

 x_c , $x =$ content image, synthetic image

$$
F_{ik}^l = i^{\text{th}}
$$
 filter at position k in layer l

 $=$ number of filters, and size of feature maps, in layer l N_l, M_l

$$
v_l
$$
 = weighting factor for layer l

$$
G_{ij}^l
$$
, A_{ij}^l = Gram matrices for style image, and synthetic image

Key takeaways

- \triangleright Continuous improvement in CNN architectures and heuristics (tips and tricks)
	- always check literature to find state-of-the-art methods
- \triangleright Training methodology
	- \triangleright Split data into training (70 %), validation (10 %), and testing (20 %)
	- \triangleright Take care of data leakage (e.g., multiple samples of same patients should be in same set)
	- Check distribution of classes, work on balanced datasets (ideally)
	- Tune hyperparameters on validation set. Save best model and do inference on test set (once)
	- Don't use off-the-shelf model blindly. Do ablation studies to know its working

\triangleright Data augmentation techniques are not standardized

- \triangleright Get input from experts to know what data augmentations make sense in the domain \triangleright For e.g., in chest X-rays we don't want vertical flipping
- \triangleright Results
	- \triangleright Use multiple metrics rather a single metric to report results (often they are complementary)
	- \triangleright Show both qualitative and quantitative results (e.g., image segmentation)

Questions?