
COMP9444 Week 4b

Sonit Singh
School of Computer Science and Engineering

Faculty of Engineering
The University of New South Wales, Sydney, Australia

sonit.singh@unsw.edu.au

Lecture 4b. Image Processing

mailto:sonit.singh@unsw.edu.au


Agenda
 Convolutional Neural Networks
 Why training Deep Neural Networks is hard?
 DNN training strategy
 Transfer Learning
 Overfitting and Underfitting
 Methods to avoid overfitting
 Data Augmentation
 Regularization

 Data Preprocessing
 Batch Normalization
 Choice of optimizers
 Tuning DNNs hyperparameters
 Neural Style Transfer
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Convolutional Neural Networks (CNNs)
 A class of deep neural networks suitable for processing 2D/3D data. For e.g., Images and 

Videos
 CNNs can capture high-level representation of images/videos which can be used for end-

tasks such as classification, object detection, segmentation, etc. 
 A range of CNNs improving over the years

3Source: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9

https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9


History
 ImageNet (2009) 
 Consists of 14 million images, more than 21,000 classes, and about 1 million images have 

bounding box annotations  
 Annotated by humans using crowdsourcing platform “Amazon Mechanical Turk”

 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
 annual competition to foster the development and benchmarking of state-of-the-art algorithms 

in Computer Vision
 Led to improvement in architectures and techniques at the intersection of CV and DL

4Image Credit: Synced. https://syncedreview.com/2020/06/23/google-deepmind-researchers-revamp-imagenet/

https://syncedreview.com/2020/06/23/google-deepmind-researchers-revamp-imagenet/


LeNet
 First developed by Yann Lecun in 1989 for digit recognition
 First time backprop is used to automatically learn visual features 
 Two convolutional layers, three fully connected layers (32 x 32 input, 6 and 12 FMs, 5 x 5 filters)
 Stride = 2 is used to reduce image dimensions
 Scaled tanh activation function
 Uniform random weight initialization

5Source: Lecun et al. (1989). Gradient-based learning applied to document recognition.    



CNN Architectures

 AlexNet, 8 layers (2012)
 VGG, 19 layers (2014)
 GoogleNet, 22 layers (2014)
 ResNets, 152 layers (2015)
 DenseNet, 201 layers (2017)
 EfficientNet (2019)
 EfficientNetV2 (2021)

6.    



AlexNet
 650K neurons
 630M connections
 60M parameters

 more parameters than images -------> danger of overfitting
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Enhancements
 Rectified Linear Units (ReLUs)
 Overlapping pooling (Width = 3, stride = 2) 
 Stochastic gradient descent with momentum and weight decay
 Data augmentation to reduce overfitting
 50% dropout in the fully connected layers
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Dealing with Deep Networks
 > 10 layers
 weight initialization 
 batch normalization

 > 30 layers
 skip connections

 > 100 layers
 identity skip connections

9Slide Credit: Alan Blair   



Statistics Example: Coin Tossing

10Slide Credit: Alan Blair   



Statistics

11Slide Credit: Alan Blair



Weight Initialization

12Slide Credit: Alan Blair



Weight Initialization

13Slide Credit: Alan Blair



Weight Initialization

14Slide Credit: Alan Blair



Weight Initialization

15Slide Credit: Alan Blair



Batch Normalization

16Slide Credit: Alan Blair



Going Deeper

 If we simply stack additional layers, it can lead to higher training error as well as higher test 
error

17Slide Credit: Alan Blair   



Residual Networks

 Idea: Take any two consecutive stacked layers in a deep network and add a “skip” connection 
which bypasses these layers and is added to their output.

18Slide Credit: Alan Blair   



Residual Networks

 the preceding layers attempt to do the “whole” job, making x as close as possible to the 
target output of the entire network

 F(x) is a residual component which corrects the errors from previous layers, or provides 
additional details which the previous layers were not powerful enough to compute

 With skip connections, both training and test error drop as you add more layers

 With more than 100 layers, need to apply ReLU before adding the residual instead of 
afterwards. This is called an identity skip connection.
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Dense Networks

 Good results have been achieved using networks with densely connected blocks, within 
which each layer is connected by shortcut connections to all the preceding layers. 

20



VGG
 Developed at Visual Geometry Group (Oxford) by Simonyan and Zisserman
 1st runner up (Classification) and Winner (localization) of ILSVRC 2014 competition
 VGG-16 comprises of 138 million parameters
 VGG-19 comprises of 144 million parameters 

21Image Credit: Medium. https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11

https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11


GoogLeNet
 A 22-layer CNN developed by researchers at Google
 Deeper networks prone to overfitting and suffer 
from exploding or vanishing gradient problem
 Core idea “Inception module” 
 Adding Auxiliary loss as an extra supervision
 Winner of 2014 ILSVRC Challenge

22Source: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9

https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9


ResNet
 Developed by researchers at Microsoft
 Core idea “residual connections” to preserve the gradient
 The identity matrix transmits forward the input data that 

avoids the loose of information (the data vanishing problem)

23Image Credit: Medium. https://medium.com/@pierre_guillou/understand-how-works-resnet-without-talking-about-residual-64698f157e0c

https://medium.com/@pierre_guillou/understand-how-works-resnet-without-talking-about-residual-64698f157e0c


DenseNet
 In a DenseNet architecture, each layer is connected to every other layer, hence the name 

Densely Connected Convolutional Network
 For each layer, the feature maps of all the preceding layers are used as inputs, and its own 

feature maps are used as input for each subsequent layers
 DenseNets have several compelling advantages: 
 alleviate the vanishing-gradient problem
 strengthen feature propagation
 encourage feature reuse, and 
 substantially reduce the number of parameters.

24Image Credit: https://pytorch.org/hub/pytorch_vision_densenet/

https://pytorch.org/hub/pytorch_vision_densenet/


SENet (Squeeze-and-Excitation Network)
 CNNs fuse the spatial and channel information to extract features to solve the task
 Before this, networks weights each of its channels equally when creating the output feature 

maps
 SENets added a content aware mechanism to weight each channel adaptively
 SE block helps to improve representation power of the network, able to better map the 

channel dependency along with access to global information

25Source: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9

https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9


Why training Deep Neural Networks is hard?

26Credit: https://itechindia.co/blog/machine-learning-are-companies-in-india-ready-for-it/

https://itechindia.co/blog/machine-learning-are-companies-in-india-ready-for-it/


Why training Deep Neural Networks is hard?

27Credit: Adrian Rosebrock, PyImageSearch, https://www.pyimagesearch.com/2019/10/14/why-is-my-validation-loss-lower-than-my-training-loss/ 

https://www.pyimagesearch.com/2019/10/14/why-is-my-validation-loss-lower-than-my-training-loss/


Training Methodology
 steps

28Source: Yamashita R. et al. (2018) Convolutional neural networks: an overview and applications in radiology



Transfer Learning
 Transfer learning aims to leverage the learned knowledge from a resource-rich domain/task 

to help learning a task with not sufficient training data.
 Sometimes referred as domain adaptation

 The resource-rich domain is known as the source and the low-resource task is known as the 
target.

 Transfer learning works the best if the model features learned from the source task are 
general (i.e., domain-independent)

29Credit: Mahammadreza Ebrahimi An Introduction to Deep Transfer Learning



Transfer Learning with CNNs

30Slide Credit: Stanford CS231n Course 



Transfer Learning with CNNs

31Slide Credit: Stanford CS231n Course 



Transfer Learning is common in all applications

32Slide Credit: Stanford CS231n Course 



Overfitting and Underfitting
 Monitor the loss on training and validation sets during the training iteration.
 If the model performs poorly on both training and validation sets: Underfitting
 If the model performs well on the training set compared to the validation set: Overfitting

33Source: Yamashita R. et al. (2018) Convolutional neural networks: an overview and applications in radiology



Common methods to mitigate overfitting
 More training data
 Early Stopping
 Data Augmentation
 Regularization (weight decay, dropout)
 Batch normalization

34Source: Yamashita R. et al. (2018) Convolutional neural networks: an overview and applications in radiology
Image Credit: Hyper-parameters tuning practices: learning rate, batch size, momentum, and weight decay. Medium



More training data
 Costly
 Time consuming
 Need experts for 
specialized domains

35Source: Fast Annotation Net: A framework for active learning in 2018. https://medium.com/diffgram/fast-annotation-net-a-framework-for-active-learning-in-2018-1c75d6b4af92
Image Datasets — ImageNet, PASCAL, TinyImage, ESP and LabelMe — what do they offer ? Medium Blog

https://medium.com/diffgram/fast-annotation-net-a-framework-for-active-learning-in-2018-1c75d6b4af92


Early Stopping
 Training too little mean model will underfit on the training and testing sets
 Training too much mean model will overfit the training dataset and hence poor performance 

on test set
 Early Stopping:  
 To stop training at the point when performance on a validation set starts to degrade.
 Idea is to stop training when generalization error increases

 How to use Early Stopping
 Monitoring model performance: Using metric to evaluate to monitor performance of the model 

during training
 Trigger to stop training: 

 No change in metric over a given number of epochs
 A decrease in performance observed over a number of epochs

 Some delay or “patience” is good for early stopping 

36Source: Machine Learning Mastery: A Gentle Introduction to Early Stopping to Avoid Overtraining Neural Networks
URL: https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/

https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/


Data Augmentation
 Data augmentation generate different versions of a real dataset artificially to increase its size
 We use data augmentation to handle data scarcity and insufficient data diversity
 Data augmentation helps to increase performance of deep neural networks

 Common augmentation techniques:
 Adding noise
 Cropping 
 Flipping
 Rotation
 Scaling
 Translation
 Brightness
 Contrast
 Saturation
 Generative Adversarial Networks (GANs)

37Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Adding noise

38Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Cropping

39Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Flipping

40Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Rotation

41Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Scaling

42Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Translation

43Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/

https://research.aimultiple.com/data-augmentation-techniques/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/


Data Augmentation
 Brightness

44Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Contrast

45Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Generative Adversarial Networks (GANs) for data augmentation

46Source: Zhao et al., Differential Augmentation for Data-Efficient GAN Training, NeurIPS, 2020



Regularization: Weight Decay
 It adds a penalty term to the loss function on the training set to reduce the complexity of the 

learned model
 Popular choice for weight decay:
 L1: The L1 penalty aims to minimize the absolute value of the weights

 L2: The L2 penalty aims to minimize the squared magnitude of the weights

47Credit: 5 Techniques to Prevent Overfitting in Neural Networks. https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html

https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html


Regularization: Dropout
 L1 and L2 reduce overfitting by modifying the cost function
 Dropout modify the network by randomly dropping neurons from the neural network during 

training 
 Dropout is an efficient way to average many large neural networks

48Credit: Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014
https://colab.research.google.com/github/d2l-ai/d2l-en-colab/blob/master/chapter_multilayer-perceptrons/dropout.ipynb

https://colab.research.google.com/github/d2l-ai/d2l-en-colab/blob/master/chapter_multilayer-perceptrons/dropout.ipynb


Data Preprocessing
 The pixel values in images must be scaled prior to given as input to deep neural networks for 

training or evaluation
 Three main types of pixel scaling:
 Pixel Normalization: scale pixel values to the range 0-1
 Pixel Centering: scale pixel values to have a zero mean
 Pixel Standardization: scale pixel values to have a zero mean and unit variance

49Credit: Stanford CS231n course slides.
Machine Learning Mastery: How to Normalize, Center, and Standardize Image Pixels in Keras



Batch Normalization
 Enables stable training 
 Reduces the internal covariate shift (ICS) 
 Accelerates the training process
 Reduces the dependence of gradients on the scale of the parameters

50Source: LearnOpenCV: Batch Normalization in Deep Networks. https://learnopencv.com/batch-normalization-in-deep-networks/

https://learnopencv.com/batch-normalization-in-deep-networks/


Choice of Optimizers
 Choosing right optimizer helps to update the model parameters and reducing the loss in 

much less effort
 Most DL frameworks supports various optimizers:
 Stochastic Gradient Descent (SGD)
 Momentum
 Nesterov Accelerated Gradient
 AdaGrad
 AdaDelta
 Adam
 RMSProp

51Source: Towards Data Science. Various Optimization Algorithms For Training Neural Network https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6

https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6


Tuning Hyperparameters
 Hyperparameters are all parameters which can be arbitrarily set by the user before starting 

training
 Hyperparameters are like knobs or dials of the network (model)
 An optimization problem: We aim to find the right combinations of their values which can 

help us to find either the minimum (e.g., loss) or the maximum (e.g., accuracy) of a function
 Many hyperparameters to tune:
 Learning rate
 No. of epochs
 Dropout rate 
 Batch size 
 No. of hidden layers and units
 Activation function
Weight initialization 
 …

52Source: KDnuggets:  Practical Hyperparameter Optimization. https://www.kdnuggets.com/2020/02/practical-hyperparameter-optimization.html 

https://www.kdnuggets.com/2020/02/practical-hyperparameter-optimization.html


Tuning Hyperparameters strategies
 Random Guess
 Simply use values from similar work

 Rely on your experience
 Training DNNs is part art, part science
With experience sense of what works 

and what doesn’t
 Still chances of being incorrect (suboptimal performance)

 Grid Search
 Set up a grid of hyperparameters and train/test model on each of the possible combinations

 Automated hyperparameter tuning 
 Use of Bayesian optimization and Evolutionary Algorithms
 Hyperopt: Distributed Asynchronous Hyperparameter Optimization

53Source: KDnuggets:  Practical Hyperparameter Optimization. https://www.kdnuggets.com/2020/02/practical-hyperparameter-optimization.html 

https://www.kdnuggets.com/2020/02/practical-hyperparameter-optimization.html


Deep Learning Frameworks

54Source: Nguyen et al., (2019). ML and DL frameworks and libraries for large-scale data mining: a survey. 



Texture
 Texture is a repeating pattern of local variations in image intensity
 Texture provides information in the spatial arrangement of colors or intensities in an image.
 Texture is characterized by the spatial distribution of intensity levels in a neighborhood. 

55Source: https://www.mathworks.com/help/images/texture-segmentation-using-texture-filters.html

https://www.mathworks.com/help/images/texture-segmentation-using-texture-filters.html


Texture Synthesis

56Source: 



Neural Texture Synthesis

57Slide Credit: Alan Blair 



Neural Texture Synthesis

58Slide Credit: Alan Blair 



Neural Style Transfer

59Slide Credit: Alan Blair 

Content                                    +                          Style                                 New image



Neural Style Transfer

60Slide Credit: Alan Blair 



Neural Style Transfer

61Slide Credit: Alan Blair 



Key takeaways
 Continuous improvement in CNN architectures and heuristics (tips and tricks)
 always check literature to find state-of-the-art methods

 Training methodology
 Split data into training (70 %), validation (10 %), and testing (20 %)
 Take care of data leakage (e.g., multiple samples of same patients should be in same set)
 Check distribution of classes, work on balanced datasets (ideally)
 Tune hyperparameters on validation set. Save best model and do inference on test set (once)
 Don’t use off-the-shelf model blindly. Do ablation studies to know its working

 Data augmentation techniques are not standardized 
 Get input from experts to know what data augmentations make sense in the domain
 For e.g., in chest X-rays we don’t want vertical flipping

 Results
 Use multiple metrics rather a single metric to report results (often they are complementary)
 Show both qualitative and quantitative results (e.g., image segmentation)
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Questions?
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