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Agenda

» Convolutional Neural Networks

» Why training Deep Neural Networks is hard?

» DNN training strategy
» Transfer Learning
» Overfitting and Underfitting

» Methods to avoid overfitting
» Data Augmentation
» Regularization

» Data Preprocessing

» Batch Normalization

» Choice of optimizers

» Tuning DNNs hyperparameters
» Neural Style Transfer
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Convolutional Neural Networks (CNNs)

» A class of deep neural networks suitable for processing 2D/3D data. For e.g., Images and
Videos

» CNNs can capture high-level representation of images/videos which can be used for end-
tasks such as classification, object detection, segmentation, etc.

» A range of CNNs improving over the years
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UNSW Source: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9
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History

» ImageNet (2009)

» Consists of 14 million images, more than 21,000 classes, and about 1 million images have
bounding box annotations

> Annotated by humans usmg crowdsourcmg pIatform Amazon I\/Iechanlcal Turk”

> ImageNet Large Scale V|suaI Recogn|t|on ChaIIenge (ILSVRC)
» annual competition to foster the development and benchmarking of state-of-the-art algorithms
in Computer Vision

» Led to improvement in architectures and techniques at the intersection of CV and DL

UNSW Image Credit: Synced. https://syncedreview.com/2020/06/23/google-deepmind-researchers-revamp-imagenet/
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https://syncedreview.com/2020/06/23/google-deepmind-researchers-revamp-imagenet/

LeNet

» First developed by Yann Lecun in 1989 for digit recognition
» First time backprop is used to automatically learn visual features
» Two convolutional layers, three fully connected layers (32 x 32 input, 6 and 12 FMs, 5 x 5 filters)
» Stride = 2 is used to reduce image dimensions
» Scaled tanh activation function
» Uniform random weight initialization
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UNSW  Source: Lecun et al. (1989). Gradient-based learning applied to document recognition.



CNN Architectures

AlexNet, 8 layers (2012)
VGG, 19 layers (2014)
GoogleNet, 22 layers (2014)
ResNets, 152 layers (2015)
DenseNet, 201 layers (2017)
EfficientNet (2019)
EfficientNetV2 (2021)

YV V.V VYV YV V V
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AlexNet

» 650K neurons
» 630M connections
» 60M parameters

» more parameters than images
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Enhancements

» Rectified Linear Units (ReLUs)

» Overlapping pooling (Width = 3, stride = 2)

» Stochastic gradient descent with momentum and weight decay
» Data augmentation to reduce overfitting

» 50% dropout in the fully connected layers
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Dealing with Deep Networks

» > 10 layers
» weight initialization
» batch normalization

» > 30 layers

» skip connections

» > 100 layers

» identity skip connections

==

UNSW Slide Credit: Alan Blair
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Statistics Example: Coin Tossing

Example: Toss a coin once, and count the number of Heads

Mean u =3(0+1) = 0.5
Variance =3((0—-0.5)>+(1—-0.5)%)) =0.25
Standard Deviation ¢ = v/ Variance = 0.5

Example: Toss a comn 100 times, and count the number of Heads

Mean u = 100%0.5 =50
Variance — 100%0.25 =25
Standard Deviation ¢ = +/Variance = 5

Example: Toss a coin 10000 times, and count the number of Heads

u = 5000, c = v2500 = 50

UNSW Sslide Credit: Alan Blair



Statistics

The mean and variance of a set of n samples x;....,x, are given by
1 nl
Mean|x| = — z Xk
Ly
1 1 5 1 Iy ) )
Var[x] = = ) (x —Mean[x])” = (— D .x,{) — Mean|x]
= =1

n
If wy, x; are independent and y = Y wyix; then
k=1

Var[y|] = n Var[w|Var x|

UNSW Slide Credit: Alan Blair
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Weight Initialization

(i)

Consider one layer (i) of a deep neural network with weights Wik

connecting the activations {,xkr }1<;{{;”, at the previous layer to

{ (+) bi<j<n;., atthe next layer, where g() is the transfer function and

n;

.IJ(;—'_I) sum (i) (Z W. ) )

Var[sum) ] = n;Var[w()]Var[x()]
Var[x"1] ~ Gy n;Var[w!?] Var[x(")]

Then

Where Gy 1s a constant whose value 1s estimated to take account of the
transfer function.

If some layers are not fully connected, we replace n; with the average

in

number n; of iIncoming connections to each node at layer i 4 1.

UNSW Sslide Credit: Alan Blair
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Weight Initialization

If the nework has D layers, with input x = x(1) and output 7 = x(D +'), then
D B .
Var|z] ~ (H Gonj" Var[w(’)]) Var|x]
i=1

When we apply gradient descent through backpropagation, the differen-
tials will follow a similar pattern:

0
o0x

0
E:)z_:]

D
Var|—| ~ (HGI ni™ Var[w(f)])\/ar[
i=1
In this equation, n{"" is the average number of outgoing connections for
each node at layer 7, and G 1s meant to estimate the average value of the
derivative of the transfer function.

For Rectified Linear Units, we can assume Gg = G| = %

UM%W Slide Credit: Alan Blair .



Weight Initialization

In order to have healthy forward and backward propagation, each term in
the product must be approximately equal to 1. Any deviation from this
could cause the activations to either vanish or saturate, and the differentials
to either decay or explode exponentially.

D . .
Var|z]| ~ ( Gy n:-”Var[w(’)}) Var | x|
=1

I

D
Var[i} ~ (I |G n‘?”tVar[w(f)])Var[
ox i=1 |

i
Jz

We therefore choose the 1nitial weights {wf{}{)} in each layer (/) such that

Gn" Var[w)] = 1

UM%W Slide Credit: Alan Blair .



Weight Initialization

1
Enl-"ﬂ:?'[w] =1

---------- nVar(w] =1

0.75 - 1 L 0.7

22-layer ReLLU network (left),
Var|w| = % converges faster than Var|w| = %

30-layer RelLU network (right),

Var|w| = % is successful while Var|w| = % fails to learn at all

UNSW slide Credit: Alan Blair
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Batch Normalization

We can normalize the activations

(i)
k

mean and variance of those activations, calculated over a mini-batch of

of node £ 1n layer (i) relative to the

training items:

() _ x;(( ) _ Mean [r£ )]

X
\/ Var xk

These activations can then be shifted and re-scaled to

EONNOND

’,(j),‘yf) are additional parameters, for each node, which are trained by

backpropagation along with the other parameters (weights) in the network.

After training is complete, Mean [r£ )} and Var [r£ )] are either pre-computed
on the entire training set, or updated using running averages.

UNSW Sslide Credit: Alan Blair
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Going Deeper

train error (%) test error (%)
20f 205
56-layer
56-layer
101 10
20-layer
20-layer
% 1 2 3 4 5 6 % 1 2 3 7 5 6
iter. (1e4) iter. (1e4)

» If we simply stack additional layers, it can lead to higher training error as well as higher test
error

UNSW Sslide Credit: Alan Blair -
2
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Residual Networks

X l X
Y

weight layer weight layer
anytwo , F ol —
stacked layers l relu (%) hl' | e;' y

weignt layer

weight layer eht 1ay
lrelu 1 (x) =
x)=F(x)+x
H(x) (x) = F(x) o

» |dea: Take any two consecutive stacked layers in a deep network and add a “skip” connection
which bypasses these layers and is added to their output.

UNSW Sslide Credit: Alan Blair
2
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Residual Networks

» the preceding layers attempt to do the “whole” job, making x as close as possible to the
target output of the entire network

» F(x)is a residual component which corrects the errors from previous layers, or provides
additional details which the previous layers were not powerful enough to compute

» With skip connections, both training and test error drop as you add more layers

» With more than 100 layers, need to apply ReLU before adding the residual instead of
afterwards. This is called an identity skip connection.
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Dense Networks

Input . o o .
Prediction
Dense Block 1 Dense Block 2 2l |, Dense Block 3 .
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» Good results have been achieved using networks with densely connected blocks, within
which each layer is connected by shortcut connections to all the preceding layers.
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VGG

» Developed at Visual Geometry Group (Oxford) by Simonyan and Zisserman

» 15t runner up (Classification) and Winner (localization) of ILSVRC 2014 competition

. el | Softrnax 1
» VGG-16 comprises of 138 million parameters -
I Softmax | | FC 40086 |
» VGG-19 comprises of 144 million parameters L 1 C T ]
| FC 4096 | 1 Poo |
| FC 4096 |
[ Pool ]
| Pool
| Poo |
| Softmax |
l FC 1000 ]
| FC 4096 |
| FC 4096 | | Poo | | P
| Paol |
l Poo 1 1 P
| Paol |
l Poo ] | Poo ] | =
| Input | | Input | | Input
AlexNet VGG16 VGG19

UNSW Image Credit: Medium. https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvic-2014-image-classification-d02355543a11
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https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11

GoogleNet
» A 22-layer CNN developed by researchers at Google

» Deeper networks prone to overfitting and suffer
from exploding or vanishing gradient problem

» Core idea “Inception module”

» Adding Auxiliary loss as an extra supervision

» Winner of 2014 ILSVRC Challenge
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SYDNEY

UNSW  Source: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9

| Fully connectedyy |

| softMax + Aux. lossa |
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https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9
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ResNet

» Developed by researchers at Microsoft

» Core idea “residual connections” to preserve the gradient

» The identity matrix transmits forward the input data that

F(x) +x

avoids the loose of information (the data vanishing problem)
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https://medium.com/@pierre_guillou/understand-how-works-resnet-without-talking-about-residual-64698f157e0c

DenseNet

» In a DenseNet architecture, each layer is connected to every other layer, hence the name
Densely Connected Convolutional Network

» For each layer, the feature maps of all the preceding layers are used as inputs, and its own
feature maps are used as input for each subsequent layers

» DenseNets have several compelling advantages:
» alleviate the vanishing-gradient problem

» strengthen feature propagation
» encourage feature reuse, and
» substantially reduce the number of parameters.

Prediction

Input

Dense Block 2 Dense Block 3

Dense Block 1
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https://pytorch.org/hub/pytorch_vision_densenet/

SENet (Squeeze-and-Excitation Network)

» CNNs fuse the spatial and channel information to extract features to solve the task

» Before this, networks weights each of its channels equally when creating the output feature
maps

» SENets added a content aware mechanism to weight each channel adaptively

» SE block helps to improve representation power of the network, able to better map the
channel dependency along with access to global information

X U qu/‘] [T ——— M X
Ix1xC 1x1xC \ //////
H
H' Ff?' H F.m?ff’ (") . “‘ .
W

w' W
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UNSW Source: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9
ssss
o)


https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9

Why training Deep Neural Networks is hard?

THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE WRONG? )

JUST STIR THE PILE DNTIL
THEY START LOOKING RIGHT:

26


https://itechindia.co/blog/machine-learning-are-companies-in-india-ready-for-it/

Why training Deep Neural Networks is hard?

Starting here

We want to get ' :
to here \ a — kQéF'

UNSW Credit: Adrian Rosebrock, PylmageSearch, https://www.pyimagesearch.com/2019/10/14/why-is-my-validation-loss-lower-than-my-training-loss/

YYYYYY

LOSS
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https://www.pyimagesearch.com/2019/10/14/why-is-my-validation-loss-lower-than-my-training-loss/

Training Methodology
» steps

Whole data

Training - Validation
data data
Training a model Monitoring model Evaluation
performance of final model
1 performance
Hyperparameter tune

!

Model selection

UNSW  Source: Yamashita R. et al. (2018) Convolutional neural networks: an overview and applications in radiology
SYDNEY
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Transfer Learning

» Transfer learning aims to leverage the learned knowledge from a resource-rich domain/task
to help learning a task with not sufficient training data.

» Sometimes referred as domain adaptation

» The resource-rich domain is known as the source and the low-resource task is known as the
target.

» Transfer learning works the best if the model features learned from the source task are
general (i.e., domain-independent)

SSSSSS



Transfer Learning with CNNs

1. Train on Imagenet

| FC-1000 |
| FC-4096 |
| FC-4096 |

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

| Image |

Slide Credit: Stanford CS231n Course

=]
T

UNSW
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2. Small Dataset (C classes)

FC-C

I FC-4096 |

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

"\\

Reinitialize
this and train

> Freeze these

3. Bigger dataset

|  FCC |

|__FC-409% | <—— Train these

| FC-4096 |
MaxPool \
Conv-512 With bigger
C -512 :

— dataset, train
MaxPool more layers
Conv-512
Conv-512
MaxPool
i 2he > Freeze these
Conv-256
MaxPool ]
Conv-128 Lower learning rate
Conv-128 when finetuning;
MaxPool 1/10 of original LR
Conv-64 is good starting
Conv-64 j .
point
| Image |
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Transfer Learning with CNNs

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

More specific

MaxPool
Conv-256

Conv-256 More generic

MaxPool

Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

| Image |

SSSSSS

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers

31



Transfer Learning is common in all applications

Object Detection -
(Fast R-CNN) r— oy CNN pretrained Image Captioning: CNN + RNN
7 1 on ImageNet
il o [ = o R —

External proposal
algorithm
e.g. selective search

START “straw” “hat”

UNSW Slide Credit: Stanford CS231n Course
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Overfitting and Underfitting

» Monitor the loss on training and validation sets during the training iteration.
» If the model performs poorly on both training and validation sets: Underfitting
» If the model performs well on the training set compared to the validation set: Overfitting

Underfitting Overfitting

F 1

Loss function

Validation error

Training error

-
-

Number of iterations

=1

UNSW Source: Yamashita R. et al. (2018) Convolutional neural networks: an overview and applications in radiology

aOy  SYDNEY
o



Common methods to mitigate overfitting

» More training data
» Early Stopping
» Data Augmentation

» Regularization (weight decay, dropout)

> Batch normalization . Optimal
= Test data
© /
E‘} !;Inderfitting ﬂ\rgrﬂ[tils::
S
©
& /
o

Training data

Model complexity

UNSW Source: Yamashita R. et al. (2018) Convolutional neural networks: an overview and applications in radiology
- Image Credit: Hyper-parameters tuning practices: learning rate, batch size, momentum, and weight decay. Medium



More training data
» Costly

» Time consuming
» Need experts for

specialized domains

UNSW Source: Fast Annotation Net: A framework for active learning in 2018. https://medium.com/diffgram/fast-annotation-net-a-framework-for-active-learning-in-2018-1c75d6b4af92
““““““ Image Datasets — ImageNet, PASCAL, Tinylmage, ESP and LabelMe — what do they offer ? Medium Blog



https://medium.com/diffgram/fast-annotation-net-a-framework-for-active-learning-in-2018-1c75d6b4af92

Early Stopping

» Training too little mean model will underfit on the training and testing sets

» Training too much mean model will overfit the training dataset and hence poor performance
on test set

» Early Stopping:
» To stop training at the point when performance on a validation set starts to degrade.
» |dea is to stop training when generalization error increases

» How to use Early Stopping
» Monitoring model performance: Using metric to evaluate to monitor performance of the model
during training
» Trigger to stop training:
» No change in metric over a given number of epochs
» A decrease in performance observed over a number of epochs

» Some delay or “patience” is good for early stopping

UNSW  Source: Machine Learning Mastery: A Gentle Introduction to Early Stopping to Avoid Overtraining Neural Networks
- URL: https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/



https://machinelearningmastery.com/early-stopping-to-avoid-overtraining-neural-network-models/

Data Augmentation

» Data augmentation generate different versions of a real dataset artificially to increase its size
» We use data augmentation to handle data scarcity and insufficient data diversity
» Data augmentation helps to increase performance of deep neural networks

» Common augmentation techniques:
» Adding noise
» Cropping
» Flipping
» Rotation
» Scaling
» Translation
» Brightness
» Contrast
» Saturation
» Generative Adversarial Networks (GANSs)

SSSSSS


https://research.aimultiple.com/data-augmentation-techniques/

Data Augmentation
» Adding noise
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UNSW  Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/


https://research.aimultiple.com/data-augmentation-techniques/

Data Augmentation
> Cropping |

UNSW  Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/
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https://research.aimultiple.com/data-augmentation-techniques/

Data Augmentation
» Flipping

UNSW  Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-technigues/
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Data Augmentation

> Rotation 0 Base Image
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UNSW  Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/
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Data Augmentation

> 5Ca|lng 0 Base Image 0 Scale = 0.90
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UNSW  Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/
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Data Augmentation

> Translation

UNSW Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/
SYDNEY https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
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Data Augmentation
» Brightness

Ornginal image

Augmented imag
i :
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UNSW  Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/
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Data Augmentation
» Contrast

Original image
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Augmented image
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UNSW  Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/
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Data Augmentation

StYIeGANZ (baseline)

UNSW  Source: Zhao et al., Differential Augmentation for Data-Efficient GAN Training, NeurlPS, 2020

SYDNEY
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Regularization: Weight Decay

» It adds a penalty term to the loss function on the training set to reduce the complexity of the

learned model

» Popular choice for weight decay:
» L1: The L1 penalty aims to minimize the absolute value of the weights

LGY) = D i —he(x))? +p D 1641
i=1 =1

» L2: The L2 penalty aims to minimize the squared magnitude of the weights

L(x,y) = Z(yf — hg(x) )* + Az 07
=1 i=1

UNSW Credit: 5 Techniques to Prevent Overfitting in Neural Networks. https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html
B
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Regularization: Dropout
» L1 and L2 reduce overfitting by modifying the cost function

» Dropout modify the network by randomly dropping neurons from the neural network during
training

» Dropout is an efficient way to average many large neural networks

Before dropout After dropout i

t

Classification Errar %

- With dropout |

, Yay’
NN ARG ;ﬁ'\r,ﬁqﬁ-%ﬁ»ﬂ\m Al

L i i I
0 200000 400000 600000 800000 1000000
Mumber of weight updates

UNSW  Credit: Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014
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Data Preprocessing

» The pixel values in images must be scaled prior to given as input to deep neural networks for
training or evaluation

» Three main types of pixel scaling:
» Pixel Normalization: scale pixel values to the range 0-1
» Pixel Centering: scale pixel values to have a zero mean
» Pixel Standardization: scale pixel values to have a zero mean and unit variance

original data zero-centered data normalized data

b

X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

UNSW  Credit: Stanford CS231n course slides. »
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FC4, 22

Batch Normalization Input Image

» Enables stable training

Object
Label

[ 5x5 Conv, 8 ]
3x3 Conv, 16

» Reduces the internal covariate shift (ICS)

» Accelerates the training process

» Reduces the dependence of gradients on the scale of the parameters

Model Accuracy

0.8 -
-8
[
s
g 07
-4
—
=
S 06 -
=
Rc1$1& §
(y=1) 05
= No Batch Normalization
With Batch Normalization
Nﬂt Rﬂse 04 L T T T T T T
(y=0) 0 20 40 60 80 100
Epochs
USN)%W Source: LearnOpenCV: Batch Normalization in Deep Networks. https://learnopencv.com/batch-normalization-in-deep-networks/ 50
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Choice of Optimizers

» Choosing right optimizer helps to update the model parameters and reducing the loss in

much less effort

= SGD === RMSPROP ADAM
m ADAGRAD = ADADELTA

» Most DL frameworks supports various optimizers:
» Stochastic Gradient Descent (SGD)
» Momentum

: i
- "." -~ d
- - - .

» Nesterov Accelerated Gradient
» AdaGrad

» AdaDelta

» Adam

» RMSProp

loss

OHRNMNWAWM

o T T T T

20 40 60 80 100
num. iteration

YYYYYY
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Tuning Hyperparameters

» Hyperparameters are all parameters which can be arbitrarily set by the user before starting
training

» Hyperparameters are like knobs or dials of the network (model)

» An optimization problem: We aim to find the right combinations of their values which can
help us to find either the minimum (e.g., loss) or the maximum (e.g., accuracy) of a function

» Many hyperparameters to tune: O

> Learning rate |b! @5
» No. of epochs ] .
> Dropout rate Hyperparameters Parameters Score
» Batch size naeE = s # =5 Weights #

— = _ +—  pptimization
> No. of hidden layers and units eemna e =

n_layers =3 =< Weights o
> Activation function e - S e - o

. e e . . n_layers =5 -— ieiahts _

» Weight initialization {3 n_poumons = 256 # = oimaton # 92%
> ...

YYYYYY


https://www.kdnuggets.com/2020/02/practical-hyperparameter-optimization.html

Tuning Hyperparameters strategies Grid Search Random Search

» Random Guess ‘\/\/J

» Simply use values from similar work

» Rely on your experience
» Training DNNs is part art, part science
» With experience sense of what works
and what doesn’t b d i
. _ _ _ Important parameter
» Still chances of being incorrect (suboptimal performance)

» Grid Search
» Set up a grid of hyperparameters and train/test model on each of the possible combinations

Unimportant parameter
(@
O
(@
Unimportant parameter
0]

Important parameter

» Automated hyperparameter tuning
» Use of Bayesian optimization and Evolutionary Algorithms
» Hyperopt: Distributed Asynchronous Hyperparameter Optimization
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Deep Learning Frameworks

KNIME

/

S Keras Gluon HZ20

Layer

XK
b
Chainer PyTorch Theano TensorFlow CNTK MXNet| DL4] Caffel

/

[

CuDNN

|/
Apache
UNSW Source: Nguyen et al., (2019). ML and DL frameworks and libraries for large-scale data mining: a survey.
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Texture

» Texture is a repeating pattern of local variations in image intensity
» Texture provides information in the spatial arrangement of colors or intensities in an image.

» Texture is characterized by the spatial distribution of intensity levels in a neighborhood.

Texture Images Showing Local Entropy, Local Standard Deviation, and Local Range

HHT
. ;m;!.‘ |
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-

83
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UNSW Source: https://www.mathworks.com/help/images/texture-segmentation-using-texture-filters.html

SSSSSS

95


https://www.mathworks.com/help/images/texture-segmentation-using-texture-filters.html

Texture Synthesis
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Neural Texture Synthesis

l. pretrain CNN on ImageNet (VGG-19)

2. pass mput texture through CNN; compute feature map Fn;; for /™ filter
at spatial location k n layer (depth) /

3. compute the Gram matrix for each pair of features

[ [ 1
G =Y FiFj
k

s

feed (initially random) image into CNN

N

compute L2 distance between Gram matrices ot original and new image

backprop to get gradient on image pixels

N o

update image and go to step 3.

UNSW Sslide Credit: Alan Blair



Neural Texture Synthesis

We can introduce a scaling factor w; for each layer / in the network, and
define the Cost function as

L

Esyle = 7 2 = 2 L —AL)

I.fj

where N;, M; are the number of filters, and size of feature maps, in layer /,
and G / A" are the Gram matrices for the original and synthetic image.

UNSW Sslide Credit: Alan Blair



Neural Style Transfer

Content

UNSW Sslide Credit: Alan Blair

Style

New image
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Neural Style Transfer

UNSW Sslide Credit: Alan Blair
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Neural Style Transfer

For Neural Style Transfer, we minimize a cost function which 1s

Etotal = U Econtent + B Esty]e

Wi
:—zn () = F (o)l P+ 7 2N2M22

]
where o
Xey X — content image, synthetic image
Ffi — " filter at position k in layer /
N;, M; = number of filters, and size of feature maps, in layer /
Wy = weighting factor for layer /
G;' A‘r ij = Gram matrices for style image, and synthetic image

UNSW Sslide Credit: Alan Blair
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Key takeaways

» Continuous improvement in CNN architectures and heuristics (tips and tricks)
» always check literature to find state-of-the-art methods

» Training methodology
» Split data into training (70 %), validation (10 %), and testing (20 %)
» Take care of data leakage (e.g., multiple samples of same patients should be in same set)
» Check distribution of classes, work on balanced datasets (ideally)
» Tune hyperparameters on validation set. Save best model and do inference on test set (once)
» Don’t use off-the-shelf model blindly. Do ablation studies to know its working

» Data augmentation techniques are not standardized
» Get input from experts to know what data augmentations make sense in the domain
» For e.g., in chest X-rays we don’t want vertical flipping

» Results
» Use multiple metrics rather a single metric to report results (often they are complementary)
» Show both qualitative and quantitative results (e.g., image segmentation)

SSSSSS



Questions?
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