

### **Generative Artificial Intelligence**



# WARNING

This material has been reproduced and communicated to you by or on behalf of the University of New South Wales in accordance with section 113P(1) of the Copyright Act 1968 (Act). The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice



# Key-ideas covered throughout the course

- Convolutional Neural Networks (CNNs)
  - ➢ Building blocks of a typical CNN architecture
  - LeNet, AlexNet, VGG-Net, ResNet, GoogLeNet, DenseNet, ...
- Recurrent Neural Networks (RNNs)
  - ➤ Vanilla RNNs
  - Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU)
  - ➤ Transformer model
  - Bidirectional Encoder Representations from Transformers (BERT)
- Reinforcement Learning
  - ➢ Value function learning (TD-Learning, Q-Learning)
  - ➢ Policy learning
  - > Actor-Critic
- > Autoencoders, Variational Autoencoder (VAE)
- Generative Adversarial Networks (GANs)

### The AI context



Data source: Kiela et al. (2021) – Dynabench: Rethinking Benchmarking in NLP OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the author Max Roser

### What is Generative Artificial Intelligence?

- > Set of algorithms that can generate:
  - ➤ Images (GANs)
  - ➤ Text (Chat-GPT)
  - Audio (OpenAl Whisper)
  - Videos (Synthesia)
  - Code (GitHub CoPilot)
  - > Simulations (CARLA Open-source simulator for autonomous driving research)
- ➤ Guided by:
  - ➤ Training sample
  - User specifications

> Has huge potential to drastically change the way we approach content creation.



### Chat-GPT



- What is Artificial General Intelligence
- Artificial General Intelligence (AGI) refers to a type of artificial intelligence that possesses the ability to understand, learn, and apply knowledge in a way that is similar to human intelligence. Unlike narrow or specialized AI, which is designed to perform specific tasks or solve particular problems, AGI aims to exhibit general intelligence across a wide range of tasks and domains.

Characteristics of Artificial General Intelligence:

- Flexibility: AGI can adapt and apply its knowledge to various tasks and situations, even those it has not encountered before. It can learn from experiences and use that knowledge to solve new problems.
- 2. Reasoning and Understanding: AGI can reason, understand, and make sense of complex information. It can analyze and process data, draw logical conclusions, and understand cause-and-effect relationships.
- 3. Learning: AGI is capable of continuous learning and self-improvement. It can acquire new skills, knowledge, and capabilities through experience and interaction with its environment.
- 4. Creativity: AGI can demonstrate creative thinking, innovation, and the ability to generate novel and original ideas or solutions.
- 5. Generalization: AGI can apply its knowledge from one domain to another, allowing it to transfer skills and understanding
- 6. Communication: AGI can effectively communicate mering hans and other AI systems, both

Send a message

Free Research Preview. ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT May 24 Version

ዕ ፊ 🖓

Stable Diffusion

stability.ai

# **Stable Diffusion XL**

# Create and inspire using the worlds fastest growing open source AI platform.

With Stable Diffusion XL, you can create descriptive images with shorter prompts and generate words within images. The model is a significant advancement in image generation capabilities, offering enhanced image composition and face generation that results in stunning visuals and realistic aesthetics.

Stable Diffusion XL is currently in beta on DreamStudio and other leading imaging applications. Like all of Stability AI's foundation models, Stable Diffusion XL will be released as open source for optimal accessibility in the near future.



**Prompt:** Glimpses of a herd of wild elephants crossing a savanna



**Prompt:** Ancient, mysterious temple in a mountain range, surrounded by misty clouds and tall peaks



**Prompt:** Vintage hot rod with custom flame paint job



**Prompt:** Beautiful waterfall in a lush jungle, with sunlight shining through the trees

### > DALLE-2

OpenAl Research ~ Product ~ Developers ~ Safety Company ~

# DALL-E2

DALL-E 2 is an AI system that can create realistic images and art from a description in natural language.

Try DALL-E 7 Follow on Instagram 7



**Prompt:** A hand-drawn sailboat circled by birds on the sea at sunrise



**Prompt:** A cartoon of a cat catching a mouse



**Prompt:** A photograph of a sunflower with sunglasses on in the middle of the flower in a field on a bright sunny day



**Prompt:** 3D render of a cute tropical fish in an aquarium on a dark blue background, digital art

### MusicLM

### MusicLM

Describe a musical idea and hear it come to life with Al



# ChatGPT

- It is a powerful text-generating dialogue system that can generate humanlike responses to inputs from users.
- Based on Generative Pre-trained Transformer (GPT) architecture
- It is trained on vast data from the internet
- It can accomplish a variety of NLP tasks such as translation, answering questions, sentence completion, etc.
- Let's check GPT-4 capabilities https://openai.com/gpt-4

## Transformers

- Attention is All You Need
- Novel architecture relies entirely on self-attention to compute representations of its input and output without using sequential RNNs or convolutions.
- Aim is to solve seq2seq tasks while handling long-range dependencies

"Griezmann's announcement comes as a bit of a shock. After enduring the drama surrounding his potential last summer, many thought he was committed to Atletico for more than a year, but the Frenchman seems to have changed his mind."



### Understanding self-attention with Search



Self-attention:

Identify and attend to most important features in input



Self-attention:

Identify and attend to most important features in input





Self-attention:

Identify and attend to most important features in input

Step 1: Encode position information

Step 2: Extract query (Q), key (K), and value (V)

Step 3: Compute attention weighting



Self-attention:

Identify and attend to most important features in input

Step 1: Encode position information

Step 2: Extract query (Q), key (K), and value (V)

Step 3: Compute attention weighting



Self-attention:

Identify and attend to most important features in input

Step 1: Encode position information

- Step 2: Extract query (Q), key (K), and value (V)
- Step 3: Compute attention weighting

Step 4: Extract features with high attention



Softmax 
$$\left\{ \begin{array}{c} Q. K^{T} \\ \hline Scaling \end{array} \right\} x V = A (Q, K, V)$$

### Self-attention:



- > Key idea: Improve task-agnostic few-shot performance
- Evaluation on various NLP tasks under few-shot learning, one-shot learning, and zero-shot learning demonstrates GPT-3 promising results
- > Technical details:
  - > An autoregressive language model
  - ➢ GPT-3 has 96 layers with each layer having 96 attention heads
  - trained on datasets with 500 billion tokens
  - ➢ Word embedding size of 12888
  - Context window size is of 2048 tokens
  - > Uses alternating dense and locally banded sparse attention patterns

> Compute:

- > Trained on more than 576 GB of text data including common crawl, Books, and Wikipedia
- About 175 billion parameters
- costs OpenAl around \$4.6 million

Credit: Brown et al., (2020). Language models are few-shot learners. Priya Shree. Medium: The journey of OpenAI GPT models. <u>https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7</u>

### Language Models are Few-Shot Learners

| Tom B. Brown* Benja       |           | Benjamin  | amin Mann* N   |         | yder* Me         | anie Subbiah*  |  |
|---------------------------|-----------|-----------|----------------|---------|------------------|----------------|--|
| Jared Kaplan <sup>†</sup> | Prafulla  | Dhariwal  | Arvind Neelak  | antan   | Pranav Shyam     | Girish Sastry  |  |
| Amanda Askell             | Sandhini  | Agarwal   | Ariel Herbert- | Voss    | Gretchen Krueger | Tom Henighan   |  |
| <b>Rewon Child</b>        | Aditya    | Ramesh    | Daniel M. Zie  | gler    | Jeffrey Wu       | Clemens Winter |  |
| Christopher He            | sse       | Mark Chen | Eric Sigle     | er      | Mateusz Litwin   | Scott Gray     |  |
| Benjan                    | nin Chess |           | Jack Clark     |         | Christopher      | Berner         |  |
| Sam McCan                 | dlish     | Alec Ra   | dford          | Ilya Su | tskever l        | Dario Amodei   |  |

OpenAI

- Fine-Tuning: Updating the weights of a pre-trained model by training on a supervised dataset specific to the desired task.
- Few-Shot Learning: Refers to the setting where the model is given a few demonstrations of the task at inference time as conditioning, but no weight updates are allowed.
- > One-Shot Learning: In this setting, only one demonstration is allowed
- Zero-Shot Learning: In this setting, a model can learn to recognize things that it hasn't explicitly seen before during training. The idea behind is how humans can naturally find similarities between data classes, in the same way, training the machines to identify.

### Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning

The three settings we explore for in-context learning

#### Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.



#### One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

|   | Translate English to French: | - task description |
|---|------------------------------|--------------------|
| 2 | sea otter => loutre de mer   | example            |
|   | cheese =>                    | ←— prompt          |



Traditional fine-tuning (not used for GPT-3)

The model is trained via repeated gradient updates using a

Fine-tuning

#### Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

| Translate English to French:   | ← task description |
|--------------------------------|--------------------|
| sea otter => loutre de mer     | ← examples         |
| peppermint => menthe poivrée   | ←                  |
| plush girafe => girafe peluche | <i></i>            |
| cheese =>                      | ←— prompt          |



### Sizes, architectures, and learning hyper-parameters of GPT-3 models

| Model Name            | $n_{ m params}$ | $n_{ m layers}$ | $d_{ m model}$ | $n_{ m heads}$ | $d_{ m head}$ | Batch Size | Learning Rate       |
|-----------------------|-----------------|-----------------|----------------|----------------|---------------|------------|---------------------|
| GPT-3 Small           | 125M            | 12              | 768            | 12             | 64            | 0.5M       | $6.0	imes10^{-4}$   |
| GPT-3 Medium          | 350M            | 24              | 1024           | 16             | 64            | 0.5M       | $3.0	imes10^{-4}$   |
| GPT-3 Large           | 760M            | 24              | 1536           | 16             | 96            | 0.5M       | $2.5	imes10^{-4}$   |
| GPT-3 XL              | 1.3B            | 24              | 2048           | 24             | 128           | 1 <b>M</b> | $2.0	imes10^{-4}$   |
| GPT-3 2.7B            | 2.7B            | 32              | 2560           | 32             | 80            | 1 <b>M</b> | $1.6	imes10^{-4}$   |
| GPT-3 6.7B            | 6.7B            | 32              | 4096           | 32             | 128           | 2M         | $1.2 	imes 10^{-4}$ |
| GPT-3 13B             | 13.0B           | 40              | 5140           | 40             | 128           | 2 <b>M</b> | $1.0	imes10^{-4}$   |
| GPT-3 175B or "GPT-3" | 175.0B          | 96              | 12288          | 96             | 128           | 3.2M       | $0.6	imes10^{-4}$   |

Datasets used to train GPT-3

|                         | Quantity    | Weight in    | Epochs elapsed when      |
|-------------------------|-------------|--------------|--------------------------|
| Dataset                 | (tokens)    | training mix | training for 300B tokens |
| Common Crawl (filtered) | 410 billion | 60%          | 0.44                     |
| WebText2                | 19 billion  | 22%          | 2.9                      |
| Books1                  | 12 billion  | 8%           | 1.9                      |
| Books2                  | 55 billion  | 8%           | 0.43                     |
| Wikipedia               | 3 billion   | 3%           | 3.4                      |

### GPT-3 Tasks

- Language modelling: Calculated zero-shot perplexity on the Penn Tree Bank (PTB) dataset
- LAMBADA: The LAMBADA dataset tests the modelling of long-range dependencies in text the model is asked to predict the last word of sentences which require reading a paragraph of context.
- The StoryCloze 2016 dataset, which involves selecting the correct ending sentence for five-sentence long stories.
- > The HelloSwag dataset involves picking the best ending to a story or set of instructions.
- Closed Book Question Answering: Measuring GPT-3's ability to answer questions about broad factual knowledge.
- Translation: Translation English, French, German, Romanian
- Reading Comprehension
- SuperGLUE (prominent evaluation framework for research towards language understanding)
- Natural Language Inference (NLI)
- > SAT Analogies
- Synthetic and Qualitative tasks (addition, subtraction, ...)
- ➤ ... and more ...

### **GPT-3** Results

### Results on language modelling, Cloze, and completion Tasks

| Setting         | LAMBADA           | LAMBADA           | StoryCloze               | HellaSwag                |
|-----------------|-------------------|-------------------|--------------------------|--------------------------|
|                 | (acc)             | (ppl)             | (acc)                    | (acc)                    |
| SOTA            | 68.0 <sup>a</sup> | 8.63 <sup>b</sup> | <b>91.8</b> <sup>c</sup> | <b>85.6</b> <sup>d</sup> |
| GPT-3 Zero-Shot | 76.2              | 3.00              | 83.2                     | 78.9                     |
| GPT-3 One-Shot  | 72.5              | 3.35              | 84.7                     | 78.1                     |
| GPT-3 Few-Shot  | 86.4              | 1.92              | 87.7                     | 79.3                     |

### $\succ$ Results on three open-domain QA tasks

| Setting                                      | NaturalQS | WebQS | TriviaQA |
|----------------------------------------------|-----------|-------|----------|
| RAG (Fine-tuned, Open-Domain) [LPP+20]       | 44.5      | 45.5  | 68.0     |
| T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] | 36.6      | 44.7  | 60.5     |
| T5-11B (Fine-tuned, Closed-Book)             | 34.5      | 37.4  | 50.1     |
| GPT-3 Zero-Shot                              | 14.6      | 14.4  | 64.3     |
| GPT-3 One-Shot                               | 23.0      | 25.3  | 68.0     |
| GPT-3 Few-Shot                               | 29.9      | 41.5  | 71.2     |

# DALL-E 2

### > Capabilities:

- $\succ$  can generate images from text
- $\succ$  can insert new features or styles in images to modify them
- > Based on CLIP (Contrastive Language-Image Pre-training)





a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese

# Vision Transformer (ViT)

- > Transformers showed great performance on variety of NLP tasks.
- How to use Transformers (self-attention) for vision tasks?
- Transformer applied to image patchessimilar to NLP, but with patches instead of words

#### Published as a conference paper at ICLR 2021

#### AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy<sup>\*,†</sup>, Lucas Beyer<sup>\*</sup>, Alexander Kolesnikov<sup>\*</sup>, Dirk Weissenborn<sup>\*</sup>, Xiaohua Zhai<sup>\*</sup>, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby<sup>\*,†</sup> <sup>\*</sup>equal technical contribution, <sup>†</sup>equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com

#### ABSTRACT

While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.



### Vision Transformer (ViT) method

Split an image into fixed-size patches, linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder.



# Vision Transformer (ViT) experimental setup

- Pre-training datasets
  - ImageNet ILSVRC-2012: 1000 classes, 1.3 million images
  - ImageNet-21k: 21000 classes, 14 million images
  - ➢ JFT: 18000 classes, 303 million images
- Fine-tuning datasets
  - ➢ ImageNet- both original validation labels and Reassessed Labels (ReaL)
  - ➢ CIFAR-10/100: 60000 images each
  - ➢ Oxford-IIIT Pets: 7400 images
  - ➢ Oxford Flowers-102: 7100 images
  - > VTAB: natural, specialized, structured

### Pre-processing

- > Pre-training: image cropped, random horizontal mirroring, resize to 224 x 224
- ➢ Fine-tuning: images resized to 448 x 448, random crop of 384 x 384
- Random horizontal flips

\*Approximate number of classes and images

### Vision Transformer (ViT)

### ➢ ViT variants

| Model     | Layers | Hidden size $D$ | MLP size | Heads | Params |
|-----------|--------|-----------------|----------|-------|--------|
| ViT-Base  | 12     | 768             | 3072     | 12    | 86M    |
| ViT-Large | 24     | 1024            | 4096     | 16    | 307M   |
| ViT-Huge  | 32     | 1280            | 5120     | 16    | 632M   |

### ➢ Results

|                    | Ours-JFT<br>(ViT-H/14) | Ours-JFT<br>(ViT-L/16) | Ours-I21k<br>(ViT-L/16) | BiT-L<br>(ResNet152x4) | Noisy Student<br>(EfficientNet-L2) |
|--------------------|------------------------|------------------------|-------------------------|------------------------|------------------------------------|
| ImageNet           | $88.55 \pm 0.04$       | $87.76 \pm 0.03$       | $85.30 \pm 0.02$        | $87.54 \pm 0.02$       | $88.4/88.5^*$                      |
| ImageNet ReaL      | $90.72 \pm 0.05$       | $90.54 \pm 0.03$       | $88.62 \pm 0.05$        | 90.54                  | 90.55                              |
| CIFAR-10           | $99.50 \pm 0.06$       | $99.42 \pm 0.03$       | $99.15 \pm 0.03$        | $99.37 \pm 0.06$       | _                                  |
| CIFAR-100          | $94.55 \pm 0.04$       | $93.90 \pm 0.05$       | $93.25 \pm 0.05$        | $93.51 \pm 0.08$       | _                                  |
| Oxford-IIIT Pets   | $97.56 \pm 0.03$       | $97.32 \pm 0.11$       | $94.67 \pm 0.15$        | $96.62 \pm 0.23$       | _                                  |
| Oxford Flowers-102 | $99.68 \pm 0.02$       | $99.74 \pm 0.00$       | $99.61 \pm 0.02$        | $99.63 \pm 0.03$       | _                                  |
| VTAB (19 tasks)    | $77.63 \pm 0.23$       | $76.28 \pm 0.46$       | $72.72 \pm 0.21$        | $76.29 \pm 1.70$       | _                                  |
| TPUv3-core-days    | 2.5k                   | 0.68k                  | 0.23k                   | 9.9k                   | 12.3k                              |

# CLIP uses prior work of VirTex and ConVIRT

- VirTex: Learning Visual Representations from Textual Annotations
- Prevailing paradigm: Pretrain a CNN and then transfer the learned features to downstream tasks.
- > Using textual features to learn visual features require fewer images than other approaches.





# CLIP uses prior work of VirTex and ConVIRT

- ConVIRT: Contrastive Learning of Medical Visual Representations from paired images and text
- Proposes unsupervised strategy to learn visual representations by exploiting naturally occurring paired descriptive text (both in natural and medical domain)
- Maximizes the agreement between the true image-text representation pairs with bidirectional losses





# CLIP (Contrastive Language-Image Pre-training)

- > CLIP learns visual concepts from natural language supervision
- > Training process:
  - 1. All images and their associated captions are passed through respective encoders (image and text) to map images and text into n-dimensional vector
  - 2. Compute cosine similarity for each (image, text) pair
  - 3. During training, maximize the cosine similarity between correct encoded (image, text) pairs and minimize the cosine similarity between incorrect encoded (image, text) pairs.
- Let's visualize the training process

https://www.assemblyai.com/blog/how-dall-e-2-actually-works/

# CLIP model

- CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples.
- At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.



#### Pseudocode of core implementation of CLIP

| <pre># image_encoder - ResNet or Vision Transformer<br/># text_encoder - CBOW or Text Transformer<br/># I[n, h, w, c] - minibatch of aligned images<br/># T[n, 1] - minibatch of aligned texts<br/># W_i[d_i, d_e] - learned proj of image to embed<br/># W_t[d_t, d_e] - learned proj of text to embed<br/># t - learned temperature parameter</pre> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre># extract feature representations of each modality I_f = image_encoder(I) #[n, d_i] T_f = text_encoder(T) #[n, d_t]</pre>                                                                                                                                                                                                                        |
| <pre># joint multimodal embedding [n, d_e] I_e = l2_normalize(np.dot(I_f, W_i), axis=1) T_e = l2_normalize(np.dot(T_f, W_t), axis=1)</pre>                                                                                                                                                                                                            |
| <pre># scaled pairwise cosine similarities [n, n] logits = np.dot(I_e, T_e.T) * np.exp(t)</pre>                                                                                                                                                                                                                                                       |
| <pre># symmetric loss function labels = np.arange(n) loss_i = cross_entropy_loss(logits, labels, axis=0 loss_t = cross_entropy_loss(logits, labels, axis=1</pre>                                                                                                                                                                                      |

**CLIP** results

### Linear probe performance of CLIP models in comparison to state-of-the-art computer vision models







### DALLE-2 Demo

### Important papers relevant to understand DALLE-2



### Let's get an overview of DALLE-2 and see it in action

https://openai.com/dall-e-2

# Diffusion models (DM)

- > Generative models that can generate diverse high-resolution images given a text prompt.
- Inspired by thermodynamics
- > Diffusion models learn to generate data by reversing a gradual noising process
- DM learns to navigate along the parameterized Markov chain, gradually removing the noise over a series of timesteps to reverse the process of generating image from random noise.
- Key idea: Learning to generate images by iterative denoising



# **Stable Diffusion**

Many components integrated together to generate high-resolution images

- Forward/reverse diffusion -> method of learning to generate new stuff
- Image-text representations -> method to link images and text (e.g., CLIP method)
- > Autoencoder -> method to compress images (important to speed-up process)
- U-Net + Attention -> methods to add in good inductive biases (to generate novel images)



Source: Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022. Stable Diffusion slides by Binxu Wang

### U-Net for image segmentation

- U-net learns segmentation in an end-to-end setting
- Proven to be very powerful segmentation tool in scenarios with limited annotated data
- Doesn't contain any fully connected layers

















### **U-net Architecture**



Acknowledgement: Jay Alammar <u>https://jalammar.github.io/illustrated-stable-diffusion/</u>

Say we have an image, we generate some noise, and add it to the image



Acknowledgement: Jay Alammar <u>https://jalammar.github.io/illustrated-stable-diffusion/</u>

Create lots of training examples like the same



Acknowledgement: Jay Alammar <u>https://jalammar.github.io/illustrated-stable-diffusion/</u>

### > With dataset, train the noise predictor



Acknowledgement: Jay Alammar <u>https://jalammar.github.io/illustrated-stable-diffusion/</u>

- The trained noise predictor can take a noisy image, and with number of denoising steps, is able to predict slice of noise
- The predicted slice of noise is subtracted to get an image that is closer to images model was originally trained on (distribution of pixels)



### Latent Diffusion Model/Stable Diffusion





### Timeline of images generated by artificial intelligence Our World in Data

These people don't exist. All images were generated by artificial intelligence.



OurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the authors Charlie Giattino and Max Roser

### Economic potential of Generative AI



#### Sam Altman 🤣 @sama

heard something like this 3 times this week:

"our recent grads are now much more productive than people who have worked here for years because they've really learned how to use ChatGPT".

8:11 AM  $\cdot$  Apr 21, 2023  $\cdot$  1.7M Views

938 Retweets 214 Quotes 10K Likes 793 Bookmarks

Tweet: from Sam Altman, CEO of OpenAl



### McKinsey & Company (2023):

"Generative AI is poised to unleash the next wave of productivity. ..."

**Goldman Sachs (2023):** "we estimate that onefourth of current work tasks could be automated by AI in the US ... with particularly high exposures in administrative (46%) and legal (44%) professionals and low exposures in physicallyintensive professions such as construction (6%) and maintenance (4%).



### Rise of AI over the last 8 decades

**The rise of artificial intelligence over the last 8 decades:** As training computation has increased, AI systems have become more powerful



The color indicates the domain of the AI system: • Vision • Games • Drawing • Language • Other

| Shown on the vertical axis is the <b>training computa</b> that was used to train the AI systems.                                                           | tion Minerva: built in 2022 and trained on 2.7 billion petaFLOP<br>Minerva can solve complex mathematical problems at the college level.                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 billion petaELOP                                                                                                                                        | PaLM: built in 2022 and trained on 2.5 billion petaFLOP                                                                                                                           |
| Computation is measured in floating point operat<br>One FLOP is equivalent to one addition, subtracti<br>multiplication, or division of two decimal number | tions (FLOP).<br>GPT-3: 2020; 314 million peta-TLOP<br>GPT-3: con produce high-quality text that is<br>s. often indistinguishable from human writing.                             |
| 100 million petaFLOP                                                                                                                                       | DALL-E: 2021; 47 million petaFLOP                                                                                                                                                 |
| The data is shown on a logarithmic scale, so that<br>from each grid-line to the next it shows a 100-fold<br>increase in training computation.              | NEC: 2021; 1.1 million petaFLOP<br>Recommendation systems like Facebook's NEO determine what you see on<br>your social media feed, online shopping, streaming services, and more. |
| 1 million petaFLOP                                                                                                                                         | AlphaGo 2016; 1.9 million petaFLOP<br>AlphaGo defeated 18-time champion Lee Sedol at the ancient and highly<br>complex board game Go. The best Go players are no longen human.    |
| 10,000 petaFLOP A                                                                                                                                          | AlphaFold: 2020; 100,000 petaFLOP                                                                                                                                                 |
|                                                                                                                                                            | MuZero is a single system that achieved superhuman performance at Go,<br>chess, and shogi (Japanese chess) – all without ever being told the rules.                               |
| 100 petaFLOP                                                                                                                                               | AlexNet: 2012; 470 petaFLOP                                                                                                                                                       |
| A pivot<br>cou                                                                                                                                             | al early deep learning system, or neural network with many layers, that<br>Id recognize images of objects such as dogs and cars at near-human level.                              |
| 1 petaFLOP = 1 quadrillion FLOP                                                                                                                            | NPLM                                                                                                                                                                              |
| 10 trillion ELOP                                                                                                                                           | Decision tree                                                                                                                                                                     |
| TD-Gallevel,                                                                                                                                               | mmon learned to play backgommon at a high<br>just below the top human players of the time.    LeNet-5                                                                             |
| 100 billion FLOP                                                                                                                                           | RNN for speech                                                                                                                                                                    |
| NetTalk was able to learn to pronounce<br>text as input and matching it to phoneti<br>limitations, it did not perform the v                                | NetTalk: 1987:81 billion FLOP  ALVINN Some English set by being given Zip CNN C transcriptions. Among its many issual recognition of the text itself.                             |
| 1 billion FLOP                                                                                                                                             | • System 11                                                                                                                                                                       |
| Samuel Neural Checkers                                                                                                                                     | Back-propagation     Neccontrol 1980: 228 million FLOP                                                                                                                            |
| 10 million FLOP                                                                                                                                            | A precursor of modern vision systems. It could recognize<br>handwritten Japanese characters and few other patterns.<br>● Fuzzy NN                                                 |
| Perceptron Mark I: built in 19:<br>100,000 FLOP     Regarded as the first artificial nee<br>from those marked on the right, b                              | 57/58; 695,000 FLOP<br>ural network, it could visually distinguish cards marked on the left side<br>ut it could not learn to recognize many other types of patterns.              |
| ADALINE: built in 1960     An early single-layer artij                                                                                                     | D and trained on around 9,900 FLOP<br>ficial neural network.                                                                                                                      |
| 1,000 FLOP                                                                                                                                                 |                                                                                                                                                                                   |
| Theseus: built in 1950 and trained on around     Theseus was a small robotic mouse, developed b     that could navigate a simple maze and remember         | 140 floating point operations (FLOP)<br>ny Claude Shannon,<br>ar Its course.                                                                                                      |
| The first electronic computers                                                                                                                             | Pre Deep Learning Era Deep Learning Era                                                                                                                                           |
| were developed in the 1940s                                                                                                                                | In the with Moure's taw, doubling roughly every 20 months. Increases in transing computation accelerated, doubling roughly every 6 months.                                        |
| 1940 1950 1960 1970                                                                                                                                        | ) 1980 1990 2000 2010 2020                                                                                                                                                        |
| 1956: The Dartmouth workshop o<br>seen as the beginning of the field of                                                                                    | n Al, often<br>f Al research 1997: Deep Blue beats world<br>chess champion Garry Kasparov                                                                                         |

The data on training computation is taken from Sevilla et al. (2022) - Parameter, Compute, and Data Trends in Machine Learning It is estimated by the authors and comes with some uncertainty. The authors expect the estimates to be correct within a factor of two. Licensed under CC-BY by the authors Charlie Giattino, Edouard Mathieu, and Max Roser OurWorldinData.org - Research and data to make progress against the world's largest problems.

### Summary

> Generative AI has huge potential in varied applications, especially content creation.

- Generative AI can be used to:
  - formulate first drafts of promotional material
  - In draft procedural correspondence
  - generate itineraries for trips
  - generate synthetic data
  - > code generation (code completion, bug fixing, code style checking, code refactoring)
  - content creation for courses
  - creating designs for fashion designers
  - generating explanations for loan denials
  - multilingual customer support
  - generating automated email replies for customer support
  - ➢ Job description generation
  - draft content creation for writers
- > Healthy use of generative AI will likely improve productivity across various industries.



### References

[1] Ho et al., Denoising Diffusion Probabilistic Models. NeurIPS 2020.

https://arxiv.org/pdf/2006.11239.pdf?ref=assemblyai.com

[2] Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022.

https://arxiv.org/pdf/2204.06125.pdf

[3] Desai and Johnson. VirTex: Learning Visual Representations from Textual Annotations

https://arxiv.org/pdf/2006.06666.pdf

[4] Zhang et al., Contrastive Learning of Medical Visual Representations from Paired Images and Text. 2022.

https://arxiv.org/pdf/2010.00747.pdf

[5] Radford et al., Learning Transferable Visual Models From Natural Language Supervision. 2021.

https://arxiv.org/pdf/2103.00020.pdf

[6] Vaswani et al., Attention is All You Need. NeurIPS 2017.

https://proceedings.neurips.cc/paper\_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[7] Dosovitskiy et al., An Image is Worth 16 x 16 words: Transformers from image recognition at scale. ICLR 2021.

https://openreview.net/pdf?id=YicbFdNTTy

[8] Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022.

https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach\_High-Resolution\_Image\_Synthesis\_With\_Latent\_Diffusion\_Models\_CVPR\_2022\_paper.pdf

[9] Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

[10] Jay Alammar. The Illustrated Stable Diffusion

https://jalammar.github.io/illustrated-stable-diffusion/





# Questions?



# **Please complete myExperience survey**

https://myexperience.unsw.edu.au/unsw/