

The Rise of Language Models

Never Stand Still	Faculty of Engineering	COMP9444 7b						
	Soni	it Singh						
	School of Computer	Science and Engineering						
	Faculty o	of Engineering						
The University of New South Wales, Sydney, Australia								
	sonit.singh	i@unsw.edu.au						

Motivation

- A robot wrote this entire article. Are you scared yet, human? <u>https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3</u>
- > What It's Like To be a Computer: An Interview with GPT-3

https://www.youtube.com/watch?v=PqbB07n_uQ4

Natural Language Processing

> Enabling machines to process, represent, understand, and generate languages

Text Classification

"I love this movie. I've seen it many times and it's still awesome."

"This movie is bad. I don't like it it all. It's terrible."

Machine Translation

≡ Google Translate

Sign in

DETECT LANGUAGE ENGLISH SPANISH FRENCH ✓ Image: Constraint of the symbol of the symbo	XA Text Documents				
I love teaching humans and machines × Ich liebe es, Menschen und Maschinen beizubringen 🖈	DETECT LANGUAGE ENGLISH SPANISH FRENCH	~ ←	GERMAN ENGLISH SPANISH V		
	I love teaching humans and machines	×	Ich liebe es, Menschen und Maschinen beizub	ringen	☆
	.↓)	35 / 5000 🔲 👻		0	<

Question Answering/Comprehension

Passage Sentence

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Question

What causes precipitation to fall?

Answer Candidate

gravity

Text Summarization

Language Modelling

- > A probability distribution over words or word sequences
- Probability distribution over strings of text
 - ➢ How likely is a string in a given "language"?

P(S) = P(Where) x P(are | Where) x P(we | Where are) x P(going | Where are we)

Representing text: One-hot Encoding

- One-hot vector of an ID is a vector filled with 0s, except for a 1 at the position associated with the ID.
 - ➢ For e.g., for vocabulary size D=10, the one-hot vector of word (w) having ID=4 is e(w) = [00010000]
- One-hot encoding makes no assumption about word similarity
 - > All words are equally similar/different from eac
- This is a natural representation to start with, though a poor one

Representing text: Count Vectorizer

- Counts the number of occurrences of each word appearing in a document
- Converts a collection of text documents to a vector of term/token counts

	the	red	dog	cat	eats	food
1. the red dog	1	1	1	0	0	0
2. cat eats dog ->	0	0	1	1	1	0
 dog eats food→ 	0	0	1	0	1	1
 red cat eats → 	0	1	0	1	1	0

Representing text: tf-idf vectorizer

- Stands for Term Frequency Inverse Document Frequency (tf-idf)
- Common algorithm to transform text into a meaningful representation of numbers

- > This cheesecake is really **yummy**. I'm going for another slice.
- The restaurant service was very slow.

Representing text as vectors

- > One-hot encoding, count and tf-idf vectors are **sparse** and **long**
 - Most values are zeros
 - > Length of vector is equal to size of vocabulary (can be more than 50,000)
- > Alternative is to look for **dense vectors**. These are
 - \succ short and dense
 - > easier to use a features in machine learning (less weights to tune)
 - ➤ can capture context

Word Embeddings

- Instead of counting how often each word w occurs near "university", train a classifier on a binary prediction task:
 - \succ Is w likely to show up near "university"?
- We don't actually care about this task, but we take the learned classifier weights as the word embeddings
- Uses free-form text as implicitly supervised training data
 A word s near "university" acts as gold standard "ground-truth" to the question
 No need for hand-labeled supervision
- Word vector algorithms use the context of the words to learn numerical representations for words, so that words used in the same context have similar looking word vectors.

Word2Vec

- "You should know a word by the company it keeps"
 J.R. Firth
- Uses CBOW or Skip-gram model to train the network
- Word2Vec uses skip-gram neural network to predict neighbor context

GloVe

- > Word2Vec rely on local statistics (local context information of words)
- > GloVe captures both local and global statistics (word co-occurrence) to obtain word vectors
- > Can derive semantic relationships between words from the co-occurrence matrix
- Requires upfront pass-through entire dataset

Statistical Language Modeling

- Models that assign probabilities to the sequences of words
- Focus on n-gram
 - > 2-gram (bigram). E.g., "going to", "on the"
 - > 3-gram (trigram). E.g., "what are you", "please turn your"
- > Naïve approach:
 - > Calculate the probability of word w, given history, h: P(w/h)
 - A computation challenge with significant size of corpus
 - Do approximation using chain rule
- ➢ Bigram language model
 - Approximates the probability of a word given all the previous words by using the conditional probability of one preceding word
 - Based on Markov assumption: we can predict the probability of some future unit without looking too far in the past
 - > Use Maximum Likelihood Estimation (MLE) to estimate the probability function

Recurrent Neural Networks (RNNs)

- > A class of artificial neural networks suitable for modeling sequential or time-series data
- Exhibit dynamic behavior where connections between nodes form a directed graph along a temporal sequence
- RNNs have a looping mechanism that acts as a highway to allow information to flow from one step to the next. This information is the hidden state, which is a representation of previous inputs.

LSTMs/GRUs

- Vanilla RNNs suffers from vanishing gradient problem
 - > As the RNNs processes more steps, it has troubles retaining information from previous steps.
 - Due to back-propagation, the earlier layers fail to do any learning as the internal weights are barely being adjusted due to extremely small gradients.
 - Does not learn the long-range dependencies across time steps
- LSTMs and GRUs are two special RNNs, capable of learning long-term dependencies using mechanisms called gates.
- These gates are different tensor operations that can learn what information to add or remove to the hidden state.

End-to-End text classification

Seq2Seq model

Model has two parts: Encoder and Decoder (Encoder-Decoder Framework)

Seq2Seq used for various NLP applications

Machine Translation

Automatic Email Reply

Seq2Seq used for various NLP applications

Google's Multilingual Neural Machine Translation

Issues with RNNs for seq2seq tasks

- > Despite being very successful for various NLP tasks, there were challenges:
 - dealing with long-range dependencies
 - > the sequential nature of the architecture prevents parallelization
- > Attention mechanism helped to overcome first issue to certain extent

Attention Mechanism

- A set of mechanisms that limit some processing to a subset of incoming stimuli (reducing computational demands)
- > Attention in neural networks
 - A mechanism that learns to focus on a subset of the input that is relevant to the task.

attended feature
$$\rightarrow \hat{v} = f(\stackrel{\bullet}{h}, \stackrel{V}{V})$$

learned attention function
(neural net) set of attention
candidates

Neural Machine Translation by jointly Learning to Align and Translate

- NMT attempts to build and train a single, large neural network that reads a sentence and outputs a correct translation.
 Je suis étudiant –
- The NMT system is a seq2seq model (Encoder-Decoder framework)
- Issue: The encoder-decoder framework compresses all the necessary information of a source sentence into a fixed-length vector.

- Cho et al. (2014) showed that the performance of a basic encoder-decoder deteriorates as the length of an input sentence increases.
- > Bahdanau et al. (2015) proposed an extension to NMT which learns to align and translate jointly.
- The basic idea of "attention" is that at each time the model generates a word in a translation, it searches for a set of positions in a source sentence where the most relevant information is concentrated
- The model predicts a target word based on the context vectors associated with these source positions and all the previous generated target words

Neural Machine Translation by jointly Learning to Align and Translate

Solution: Enable the network to pay attention to specific areas of the input by adding new (weighted) connections

NMT by jointly Learning to Align and Translate

Before Attention: Long sentences are very hard as they are compressed to a fixed length vector

After Attention: The attention mechanism helps to overcome the issue

NMT by jointly Learning to Align and Translate

Credit: Bahdanau et al. (2015).

Credit: Bahdanau et al. (2015). Neural Machine Translation by jointly learning to Align and Translate. (CLR 2015.

Show, Attend and Tell (Xu et al., 2015)

"Rather than compressing an entire image into static representation, attention allows for salient features to dynamically come to forefront as needed"

Show, Attend and Tell (Xu et al., 2015)

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Source: Xu et al., (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Transformers

- Attention is All You Need
- Novel architecture relies entirely on self-attention to compute representations of its input and output without using sequential RNNs or convolutions.
- Aim is to solve seq2seq tasks while handling long-range dependencies

"Griezmann's announcement comes as a bit of a shock. After enduring the drama surrounding his potential last summer, many thought he was committed to Atletico for more than a year, but the Frenchman seems to have changed his mind."

Understanding self-attention with Search

Self-attention:

Identify and attend to most important features in input

Self-attention:

Identify and attend to most important features in input

Self-attention:

Identify and attend to most important features in input

Step 1: Encode position information

Step 2: Extract query (Q), key (K), and value (V)

Step 3: Compute attention weighting

Self-attention:

Identify and attend to most important features in input

Step 1: Encode position information

Step 2: Extract query (Q), key (K), and value (V)

Step 3: Compute attention weighting

Self-attention:

Identify and attend to most important features in input

Step 1: Encode position information

- Step 2: Extract query (Q), key (K), and value (V)
- Step 3: Compute attention weighting

Step 4: Extract features with high attention

Softmax
$$\left\{ \begin{array}{c} Q. K^T \\ \hline Scaling \end{array} \right\} x V = A (Q, K, V)$$

Self-attention:

BERT

- Bidirectional Encoder Representations from Transformers
- Idea to have deeply bidirectional, unsupervised language representation
- > Example sentence: "I accessed the bank account"
 - >Unidirectional contextual model would represent "bank" based on "I accessed the"
 - > BERT represent "bank" based on both its previous and next context "I accessed the --- account"
- > Why bidirectional in BERT possible?
 - Not possible to train bidirectional models by simply conditioning each word on its previous and next words, since this would allow the word that's being predicted to indirectly "see itself" in a multi-layer model.
 - BERT rely on two tasks
 - Masking words in the input
 - Next sentence prediction

```
Input: The man went to the [MASK]_1. He bought a [MASK]_2 of milk . Labels: [MASK]_1 = store; [MASK]_2 = gallon
```

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

Turing-NLG

- > A Transformer based generative language model
- > Based on DeepSpeed (DL library) to make distributed training of large models easier
- > 17 billion parameters

OpenAl GPT-3

- > Key idea: Improve task-agnostic few-shot performance
- Evaluation on various NLP tasks under few-shot learning, one-shot learning, and zero-shot learning demonstrates GPT-3 promising results
- > Technical details:
 - An autoregressive language model
 - ➢ GPT-3 has 96 layers with each layer having 96 attention heads
 - trained on datasets with 500 billion tokens
 - ➢ Word embedding size of 12888
 - Context window size is of 2048 tokens
 - Uses alternating dense and locally banded sparse attention patterns
- > Compute:
 - > Trained on more than 576 GB of text data including common crawl, Books, and Wikipedia
 - About 175 billion parameters
 - ➤ costs OpenAl around \$4.6 million

MT-NLG

Behold the Megatron: Microsoft and Nvidia build massive language processor

MT-NLG is a beast that fed on over 4,000 GPUs

Katyanna Quach

Tue 12 Oct 2021 // 00:36 UTC

- Largest transformer model to date
- > 530 billion parameters
- Trained on a wide variety of NLP tasks such as auto-completing sentences, question and answering, reading and reasoning
- Outperforms various tasks with little to no fine-tuning, in a few-shot or zero-shot learning
- Trained using Nvidia's Selene machine learning supercomputer
- Estimated to cost \$85 million

Where is the journey heading?

- > Are bigger language models better?
 - Bigger models are better at generalizing on various downstream tasks
 - Issues: Bias, carbon footprints

ARTICLE OPEN ACCESS

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 🍡

🙎 Emily M. Bender, 😩 Timnit Gebru, 😩 Angelina McMillan-Major, 😩 Shmargaret Shmitchell Authors Info Authors: & Claims

FAccT '21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency • March 2021 • Pages 610-623 • https://doi.org/10.1145/3442188.3445922

Published: 03 March 2021

27 October 2020 at 13:01 · 🚱

"It's entertaining, and perhaps mildly useful as a creative help," LeCun wrote. "But trying to build intelligent machines by scaling up language models is like building high-altitude airplanes to go to the moon. You might beat altitude

records, but going to the moon will require a completely different approach."

Large computer language models carry environmental, social risks

It takes an enormous amount of computing power to fuel the model language programs, Bender said. That takes up energy at tremendous scale, and that, the authors argue, causes environmental degradation. And those costs aren't borne by the computer engineers, but rather by marginalized people who cannot afford the environmental costs.

Another risk comes from the training data itself, the authors say. Because the computers read language from the Web and from other sources, they can pick up and perpetuate racist, sexist, ableist, extremist and other harmful ideologies.

Where is the journey heading?

Deep Learning, Deep Pockets?

As you would expect, training a 530-billion parameter model on humongous text datasets requires a fair bit of infrastructure. In fact, Microsoft and NVIDIA used hundreds of DGX A100 multi-GPU servers. At \$199,000 a piece, and factoring in networking equipment, hosting costs, etc., anyone looking to replicate this experiment would have to spend close to \$100 million dollars. Want fries with that?

Summary

- Large language modeling is like race between titans
- > Large language model size is increasing 10x every year for the last few years. Moore's Law
- Issues:
 - Environmental cost (carbon footprint)
 - ➤ Hard to replicate
 - ➤ Very complex
- \succ The need:
 - To build practical and efficient solutions
 - > Within everyone's capability and reach to solve real-world problems

Credit: Brown et al., (2020). Language models are few-shot learners

Priya Shree. Medium: The journey of OpenAI GPT models. <u>https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2</u>

References

[1] Rosenfield R. Two decades of statistical language modeling: where do we go from here?, Proceedings of IEEE, 2000.

- [2] Hochreiter and Schmidhuber, *Long Short-Term Memory*, Neural Computation, 1997.
- [3] Cho et al., Learning phrase representations using RNN Encoder-Decoder for Statistical Machine Translation. EMNLP 2014.
- [4] Mikolov et al., Distributed representations of words and phrases and their compositionality, NeurIPS 2013. [Google Word2Vec]
- [5] Pennington et al., *GloVe: Global Vectors for Word Representation*, EMNLP 2014. [Stanford GloVe]
- [6] McCann et al., Learned in translation: contextualized word vectors, NeurIPS 2017. [Salesforce CoVe]
- [7] Peters et al., *Deep contextualized word representations*, NAACL 2018. [AllenNLP ELMo]
- [8] Howard and Ruder, Universal Language Model Fine-tuning for Text Classification, ACL 2018. [FastAI ULMFiT]
- [9] Radford et al., Improving Language Understanding by Generative Pre-Training. [OpenAI GPT-1]
- [10] Vaswani et al., Attention is All You Need, NeurIPS 2017. [Google Transformer]
- [11] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL-HLT 2019. [Google BERT]
- [12] Yang et al., XLNet: Generalized Autoregressive Pretraining for Language Understanding, NeurIPS 2019. [Google XLNet]
- [13] Shoeybi et al., Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, ArXiv 2019. [Nvidia Megatron-LM]
- [14] Rosset et al., Turing-NLG: A 17-billion-parameter language model by Microsoft, Microsoft Research Blog, 2020. [Microsoft Turing-NLG]
- [15] Brown et al., Language Models are Few-Shot Learners, ArXiv 2020. [OpenAI GPT-3]
- [16] Clark et al., ELECTRA: Pre-training text encoders as discriminators rather than generators, ICLR 2020. [Stanford + Google ELECTRA]
- [17] DeepSpeed and Megatron-powered Megatron-Turing Natural Language Generation model (MT-NLG). [Microsoft + Nvidia Megatron-NLG]
- [18] https://www.topbots.com/leading-nlp-language-models-2020/

Questions?