
COMP9444: Neural Networks and
Deep Learning

Week 1c. Perceptrons

Alan Blair
School of Computer Science and Engineering

September 13, 2023

Outline

! Neurons – Biological and Artificial

! Perceptron Learning

! Linear Separability

! Multi-Layer Networks

2

Structure of a Typical Neuron

3

Biological Neurons

The brain is made up of neurons (nerve cells) which have

! a cell body (soma)

! dendrites (inputs)

! an axon (outputs)

! synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.
When the inputs reach some threshhold an action potential
(electrical pulse) is sent along the axon to the outputs.

4



Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

! inputs edges, each with some weight

! outputs edges (with weights)

! an activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning).
The input function is the weighted sum of the activation levels of inputs.
The activation level is a non-linear transfer function g of this input:

activationi = g(si) = g(
∑

j

wijxj)

Some nodes are inputs (sensing), some are outputs (action)

5

McCulloch & Pitts Model of a Single Neuron

x1

x2

Σ ! g !

1

"""""""#

$$$$$$$%

&
&
&
&&'

w1

w2

w0=-th

s
g(s)

s = w1x1 + w2x2−th
= w1x1 + w2x2 + w0

x1, x2 are inputs

w1, w2 are synaptic weights

th is a threshold

w0 is a bias weight

g is transfer function

6

Transfer function

Originally, a (discontinuous) step function was used for the transfer function:

g(s) =
{ 1, if s ≥ 0

0, if s < 0

(Later, other transfer functions were introduced, which are continuous and smooth)

7

Linear Separability

Question: what kind of functions can a perceptron compute?

x

x

1

2

Answer: linearly separable functions

8



Linear Separability

Examples of linearly separable functions:

AND w1 = w2 = 1.0, w0 = −1.5

OR w1 = w2 = 1.0, w0 = −0.5

NOR w1 = w2 = −1.0, w0 = 0.5

Q: How can we train it to learn a new function?

9

Rosenblatt Perceptron

10

Rosenblatt Perceptron

11

Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = w1x1 + w2x2 + w0

if g(s) = 0 but should be 1,

wk ← wk + η xk

w0 ← w0 + η

so s ← s+ η (1 +
∑

k

x2k )

if g(s) = 1 but should be 0,

wk ← wk − η xk

w0 ← w0 − η

so s ← s− η (1 +
∑

k

x2k )

otherwise, weights are unchanged. (η > 0 is called the learning rate)

Theorem: This will eventually learn to classify the data correctly,
as long as they are linearly separable.

12



Perceptron Learning Example

x1

x2

Σ→ (+/−) !

1

"""""""#

$$$$$$$%

&
&
&
&&'

w1

w2

w0

w1 x1 + w2 x2 + w0 > 0
learning rate η = 0.1
begin with random weights
w1 = 0.2
w2 = 0.0
w0 = −0.1

13

Training Step 1

x

2

1

x

(1,1)

0.2 x1 + 0.0 x2 − 0.1 > 0

w1 ← w1 − η x1 = 0.1
w2 ← w2 − η x2 = −0.1
w0 ← w0 − η = −0.2

14

Training Step 2

x

2

1

x

(2,1)

0.1 x1 − 0.1 x2 − 0.2 > 0

w1 ← w1 + η x1 = 0.3
w2 ← w2 + η x2 = 0.0
w0 ← w0 + η = −0.1

15

Training Step 3

x

2

1

x

(1.5,0.5)

(2,2) 0.3 x1 + 0.0 x2 − 0.1 > 0

3rd point correctly classified,
so no change
4th point:
w1 ← w1 − η x1 = 0.1
w2 ← w2 − η x2 = −0.2
w0 ← w0 − η = −0.2

0.1 x1 − 0.2 x2 − 0.2 > 0

16



Final Outcome

x

x

1

2

eventually, all the data will be cor-
rectly classified (provided it is lin-
early separable)

17

Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1
0

1

0

1 1

0
0 1 0 1

I 2I 1I 1 I 2I 1 I 2

Possible solution:
x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)
Recall that AND, OR and NOR can be implemented by perceptrons.

18

Multi-Layer Neural Networks

XOR

NOR

AND NOR

−1

+1

+1 −1
−1.5

−1

−1

+0.5

+0.5

Problem: How can we train it to learn a new function? (credit assignment)

19

Historical Context

In 1969, Minsky and Papert published a book highlighting the limitations of
Perceptrons, and lobbied various funding agencies to redirect funding away from
neural network research, preferring instead logic-based methods such as expert
systems.
It was known as far back as the 1960’s that any given logical function could be
implemented in a 2-layer neural network with step function activations. But, the the
question of how to learn the weights of a multi-layer neural network based on
training examples remained an open problem. The solution, which we describe in
the next section, was found in 1976 by Paul Werbos, but did not become widely
known until it was rediscovered in 1986 by Rumelhart, Hinton and Williams.

20


