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Recall: Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)
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Possible solution:
x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)
Recall that AND, OR and NOR can be implemented by perceptrons.
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Multi-Layer Neural Networks
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Problem: How can we train it to learn a new function? (credit assignment)
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Two-Layer Neural Network

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

Normally, the numbers of input and output units are fixed,
but we can choose the number of hidden units.
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The XOR Problem

x1 x2 target
0 0 0
0 1 1
1 0 1
1 1 0

XOR data cannot be learned with a perceptron, but can be achieved using a
2-layer network with two hidden units
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Neural Network Equations
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u1 = b1 + w11x1 + w12x2

y1 = g(u1)

s = c+ v1y1 + v2y2

z = g(s)

We sometimes use w as a shorthand for any of the trainable weights
{c, v1, v2, b1, b2, w11, w21, w12, w22}.
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NN Training as Cost Minimization

We define an error function or loss function E to be (half) the sum over all input
patterns of the square of the difference between actual output and target output

E =
1

2

∑

i

(zi − ti)
2

If we think of E as height, it defines an error landscape on the weight space.
The aim is to find a set of weights for which E is very low.
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Local Search in Weight Space

Problem: because of the step function, the landscape will not be smooth,
but will instead consist almost entirely of flat local regions and “shoulders”,
with occasional discontinuous jumps.
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Continuous Activation Functions (3.10)

(a) Step function (b) Sign function
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Key Idea: Replace the (discontinuous) step function with a differentiable function,
such as the sigmoid:

g(s) =
1

1 + e−s

or hyperbolic tangent

g(s) = tanh(s) =
es − e−s

es + e−s
= 2

( 1

1 + e−2s

)

− 1
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Gradient Descent (4.3)

Recall that the loss function E is (half) the sum over all input patterns of the
square of the difference between actual output and target output

E =
1

2

∑

i

(zi − ti)
2

The aim is to find a set of weights for which E is very low.

If the functions involved are smooth, we can use multi-variable calculus to adjust
the weights in such a way as to take us in the steepest downhill direction.

w ← w − η
∂E

∂w

Parameter η is called the learning rate.
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Chain Rule (6.5.2)

If, say
y = y(u)

u = u(x)
Then

∂y

∂x
=

∂y

∂u

∂u

∂x

This principle can be used to compute the partial derivatives in an efficient and
localized manner. Note that the transfer function must be differentiable (usually
sigmoid, or tanh).

Note: if z(s) =
1

1 + e−s
, z′(s) = z(1− z).

if z(s) = tanh(s), z′(s) = 1− z2.
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Forward Pass
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u1 = b1 + w11x1 + w12x2

y1 = g(u1)

s = c+ v1y1 + v2y2

z = g(s)

E =
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Backpropagation

Partial Derivatives

∂E

∂z
= z − t

dz

ds
= g′(s) = z(1− z)

∂s

∂y1
= v1

dy1
du1

= y1(1− y1)

Useful notation

δout =
∂E

∂s
δ1 =

∂E

∂u1
δ2 =

∂E

∂u2

Then

δout = (z − t) z (1− z)

∂E

∂v1
= δout y1

δ1 = δout v1 y1 (1− y1)
∂E

∂w11

= δ1 x1

Partial derivatives can be calculated efficiently by packpropagating deltas through
the network.
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Two-Layer NN’s – Applications

! Medical Dignosis

! Autonomous Driving

! Game Playing

! Credit Card Fraud Detection

! Handwriting Recognition

! Financial Prediction

15

Example: Pima Indians Diabetes Dataset

Attribute mean stdv
1. Number of times pregnant 3.8 3.4
2. Plasma glucose concentration 120.9 32.0
3. Diastolic blood pressure (mm Hg) 69.1 19.4
4. Triceps skin fold thickness (mm) 20.5 16.0
5. 2-Hour serum insulin (mu U/ml) 79.8 115.2
6. Body mass index (weight in kg/(height in m)2) 32.0 7.9
7. Diabetes pedigree function 0.5 0.3
8. Age (years) 33.2 11.8

Based on these inputs, try to predict whether the patient will develop
Diabetes (1) or Not (0).
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Training Tips

! re-scale inputs and outputs to be in the range 0 to 1 or −1 to 1

" otherwise, backprop may put undue emphasis on larger values

! replace missing values with mean value for that attribute

! initialize weights to small random values

! on-line, batch, mini-batch, experience replay

! adjust learning rate (and momentum) to suit the particular task
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ALVINN (Pomerleau 1991, 1993)
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ALVINN
Sharp
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 30x32 Sensor
 Input Retina

Straight
 Ahead
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ALVINN

! Autonomous Land Vehicle In a Neural Network

! Later version included a sonar range finder

" 8× 32 range finder input retina
" 29 hidden units
" 45 output units

! Supervised Learning, from human actions (Behavioral Cloning)

" Replay Memory – experiences are stored in a database and randomly
shuffled for training

" Data Augmentation – additional “transformed” training items are created,
in order to cover emergency situations

20



Data Augmentation
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Momentum (8.3)

If the landscape is shaped like a “rain gutter”, weights will tend to oscillate without
much improvement. We can add a momentum factor

δw ← α δw − η
∂E

∂w
w ← w + δw

Hopefully, this will dampen sideways oscillations but amplify downhill motion by
1

1−α
. Momentum can also help to escape from local minima, or move quickly

across flat regions in the loss landscape.

When momentum is used, we generally reduce the learning rate at the same time,
in order to compensate for the implicit factor of 1

1−α
.
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Adaptive Moment Estimation (Adam)

Maintain a running average of the gradients (mt) and squared gradients (vt) for
each weight in the network.

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t

To speed up training in the early stages, compensating for the fact that mt, gt are
initialized to zero, we rescale as follows:

m̂t =
mt

1− β t
1

, v̂t =
vt

1− β t
2

Finally, each parameter is adjusted according to:

wt = wt−1 −
η√

v̂t + ε
m̂t
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