
COMP9444: Neural Networks and

Deep Learning
Week 2a. Probability

Alan Blair

School of Computer Science and Engineering

September 20, 2023



Outline

➛ Probability and Random Variables (3.1-3.2)

➛ Probability for Continuous Variables (3.3)

➛ Gaussian Distributions (3.9.3)

➛ Conditional Probability (3.5)

➛ Bayes’ Rule (3.11)

➛ Entropy and KL-Divergence (3.13)

➛ Continuous Distributions

➛ Wasserstein Distance

2



Probability (3.1)

Begin with a set Ω – the sample space (e.g. 6 possible rolls of a die)

Each ω ∈ Ω is a sample point / possible world / atomic event

A probability space or probability model is a sample space

with an assignment P (ω) for every ω ∈ Ω such that

0 ≤ P (ω) ≤ 1
∑

ω

P (ω) = 1

e.g. P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 1
6 .
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Random Events

A random event A is any subset of Ω

P (A) =
∑

{ω∈A}
P (ω)

e.g. P (die roll < 5) = P (1) + P (2) + P (3) + P (4) = 1
6 + 1

6 + 1
6 +

1
6 = 2

3
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Random Variables (3.2)

A random variable is a function from sample points to some range

(e.g. the Reals or Booleans)

For example, Odd(3) = true

P induces a probability distribution for any random variable X:

P (X = xi) =
∑

{ω:X(ω)=xi}
P (ω)

e.g., P (Odd = true) = P (1) + P (3) + P (5) = 1
6 + 1

6 + 1
6 = 1

2
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Probability for Continuous Variables (3.3)

For continuous variables, P is a density; it integrates to 1.

e.g. P (X = x) = U [18, 26](x) = uniform density between 18 and 26

0.125

dx18 26

When we say P (X = 20.5) = 0.125, it really means

lim
dx→0

P (20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125
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Gaussian Distribution (3.9.3)

µ = mean

σ = standard deviation
Pµ,σ(x) =

1√
2πσ

e−(x−µ)2/2σ2
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Multivariate Gaussians

The d-dimensional multivariate Gaussian with mean µ and covariance Σ
is given by

Pµ,Σ(x) =
1

√

(2π)d|Σ|
e−

1

2
(x−µ)TΣ−1(x−µ)

where |Σ| denotes the determinant of Σ.

If Σ = diag(σ2
1 , . . . , σ

2
d) is diagonal, the multivariate Gaussian reduces to

Pµ,Σ(x) =
∏

i

Pµi,σi
(xi)

The Gaussian with µ = 0, Σ = I is called the Standard Normal distribution.
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Probability and Logic

A
B

A ^ B

Logically related events must have related probabilities

For example, P (A ∨B) = P (A) + P (B)− P (A ∧B)
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Conditional Probability (3.5)

A
B

A ^ B

If P (B) 6= 0, then the conditional probability of A given B is

P (A |B) =
P (A ∧B)

P (B)
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Bayes’ Rule (3.11)

The formula for conditional probability can be manipulated to find a relationship

when the two variables are swapped:

P (A ∧B) = P (A |B)P (B) = P (B |A)P (A)

→ Bayes’ rule P (A |B) =
P (B |A)P (A)

P (B)

This is often useful for assessing the probability of an underlying Cause after an

Effect has been observed:

P (Cause|Effect) =
P (Effect|Cause)P (Cause)

P (Effect)
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Example: Medical Diagnosis

Question: Suppose we have a test for a type of cancer which occurs in 1% of

patients. The test has a sensitivity of 98% and a specificity of 97%.

If a patient tests positive, what is the probability that they have the cancer?

Answer: There are two random variables: Cancer (true or false) and Test (positive

or negative). The probability is called a prior, because it represents our estimate of

the probability before we have done the test (or made some other observation).

The sensitivity and specificity are interpreted as follows:

P (positive | cancer) = 0.98, and P (negative | ¬cancer) = 0.97
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Bayes’ Rule for Medical Diagnosis

.

Yes

0.98

0.02

Pos

Pos

Neg

Neg

Test

Test

0.01

No

0.99

0.97

0.03

P(Yes,Pos) = 0.01  

P(Yes,Neg) = 0.00  

P(No ,Neg) = 0.96  

Cancer?
P(No ,Pos)  = 0.03  

.

P (cancer | positive) =
P (positive | cancer)P (cancer)

P (positive)

=
0.98 ∗ 0.01

0.98 ∗ 0.01 + 0.03 ∗ 0.99
=

0.01

0.01 + 0.03
=

1

4
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Example: Light Bulb Defects

Question: You work for a lighting company which manufactures 60% of its light

bulbs in Factory A and 40% in Factory B. One percent of the light bulbs from

Factory A are defective, while two percent of those from Factory B are defective. If

a random light bulb turns out to be defective, what is the probability that it was

manufactured in Factory A?

Answer: There are two random variables: Factory (A or B) and Defect (Yes or No).

In this case, the prior is:

P (A) = 0.6, P (B) = 0.4

The conditional probabilities are:

P (defect | A) = 0.01, and P (defect | B) = 0.02
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Bayes’ Rule for Light Bulb Defects

0.4

Yes

Factory?

0.01

0.99

0.02

0.98

P(A,Yes) = 0.006

P(A,No ) = 0.594

P(B,Yes) = 0.008

P(B,No ) = 0.392 No

Defect?

Defect?

No

Yes

B

A
0.6

P (A | defect) =
P (defect | A)P (A)

P (defect)

=
0.01 ∗ 0.6

0.01 ∗ 0.6 + 0.02 ∗ 0.4
=

0.006

0.006 + 0.008
=

3

7
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Entropy and KL-Divergence (3.13)

The entropy of a discrete probability distribution p = 〈p1, . . . , pn〉 is

H(p) =

n
∑

i=1

pi (− log2 pi)

Given two probability distributions p = 〈p1, . . . , pn〉 and q = 〈q1, . . . , qn〉 on the

same set Ω, the Kullback-Leibler Divergence between p and q is

DKL(p || q) =

n
∑

i=1

pi (log2 pi − log2 qi)

KL-Divergence is like a “distance” from one probability distribution to another.

But, it is not symmetric.

DKL(p || q) 6= DKL(q || p)
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Entropy and Huffmann Coding

Entropy is the number of bits per symbol achieved by a (block) Huffman Coding

scheme.

Example 1: H(〈0.5, 0.5〉) = 1 bit.

Suppose we want to encode, in zeros and ones, a long message composed of the

letters A and B, which occur with equal frequency. This can be done efficiently by

assigning A=0, B=1. In other words, one bit is needed to encode each letter.

B

10

A
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Entropy and Huffmann Coding
Example 2: H(〈0.5, 0.25, 0.25〉) = 1.5 bits.

Suppose we need to encode a message consisting of the letters A, B and C, where

B and C occur equally often but A occurs twice as often as the other two letters.

In this case, an optimally efficient code would be A=0, B=10, C=11.

The average number of bits needed to encode each letter is 1.5 .

0 1

A

B C

10
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Entropy and KL-Divergence

If the samples occur in some other proportion, we would need to “block” them

together in order to encode them efficiently. But, the average number of bits

required by the most efficient coding scheme is given by

H(〈p1, . . . , pn〉) =

n
∑

i=1

pi (− log2 pi)

DKL(q || p) is the number of extra bits we need to trasmit if we designed a code for

q() but it turned out that the samples were drawn from p() instead.

DKL(p || q) =

n
∑

i=1

pi (log2 pi − log2 qi)
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Continuous Entropy and KL-Divergence

➛ the entropy of a continuous distribution p() is

H(p) =

∫

θ
p(θ)(− log p(θ)) dθ

➛ KL-Divergence between two continuous distributions p() and q() is

DKL(p || q) =

∫

θ
p(θ)(log p(θ)− log q(θ)) dθ
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Entropy for Gaussian Distributions

Entropy of Gaussian with mean µ and standard deviation σ :

1

2
(1 + log(2π)) + log(σ)

Entropy of a d-dimensional Gaussian p() with mean µ and variance Σ :

H(p) =
d

2
(1 + log(2π)) +

1

2
log |Σ|

If Σ = diag(σ2
1 , . . . , σ

2
d) is diagonal, the entropy is:

H(p) =
d

2
(1 + log(2π)) +

d
∑

i=1

log(σi)
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KL-Divergence for Gaussians

KL-Divergence between Gaussians q(), p() with mean µ1, µ2 and variance Σ1, Σ2:

DKL(q||p) =
1

2

[

(µ2 − µ1)
TΣ−1

2 (µ2 − µ1) + Trace(Σ−1
2 Σ1) + log

|Σ2|

|Σ1|
− d

]

In the case where µ2 = 0, Σ2 = I, the KL-Divergence simplifies to:

DKL(q||p) =
1

2

[

||µ1||
2 +Trace(Σ1)− log |Σ1| − d

]

If Σ1 = diag(σ2
1 , . . . , σ

2
d) is diagonal, this reduces to:

DKL(q||p) =
1

2

[

||µ1||
2 +

d
∑

i=1

(σ2
i − 2 log(σi)− 1)

]
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Wasserstein Distance

Another commonly used measure is the Wasserstein Distance which, for

multivariate Gaussians, is given by

W2(q, p)
2 = ||µ1 − µ2||

2 +Trace(Σ1 +Σ2 − 2(Σ1Σ2)
1

2 )

In the case where µ2 = 0, Σ2 = I, the KL-Divergence simplifies to:

W2(q, p)
2 = ||µ1||

2 + d+Trace(Σ1 − 2(Σ1)
1

2 )

If Σ = diag(σ2
1 , . . . , σ

2
d) is diagonal, this reduces to:

W2(q, p)
2 = ||µ1||

2 +

d
∑

i=1

(σi − 1)2
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Forward KL-Divergence

Given P , choose Gaussian Q to minimize DKL(P ||Q)

Q must not be small in any place where P is large.
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Reverse KL-Divergence

Given P , choose Gaussian Q to minimize DKL(Q ||P )

Q just needs to be concentrated in some place where P is large.
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