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Outline

➛ geometry of hidden unit activations (8.2)

➛ limitations of 2-layer networks

➛ vanishing / exploding gradients

➛ alternative activation functions (6.3)

➛ ways to avoid overfitting in neural networks (5.2-5.3)
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Encoder Networks
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➛ identity mapping through a bottleneck

➛ also called N–M–N task

➛ used to investigate hidden unit representations
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N–2–N Encoder
Hidden Unit Space:
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8–3–8 Encoder

Exercise:

➛ Draw the hidden unit space for 2-2-2, 3-2-3, 4-2-4 and 5-2-5 encoders.

➛ Represent the input-to-hidden weights for each input unit by a point, and the

hidden-to-output weights for each output unit by a line.

➛ Now consider the 8-3-8 encoder with its 3-dimensional hidden unit space.

→ what shape would be formed by the 8 points representing the

input-to-hidden weights for the 8 input units?

→ what shape would be formed by the planes representing the

hidden-to-output weights for each output unit?

Hint: think of two platonic solids, which are “dual” to each other.
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Hinton Diagrams

➛ used to visualize higher dimensions

➛ white = positive, black = negative
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Learning Face Direction
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Learning Face Direction
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Weight Space Symmetry (8.2)

➛ swap any pair of hidden nodes, overall function will be the same

➛ on any hidden node, reverse the sign of all incoming and outgoing weights

(assuming symmetric transfer function)

➛ hidden nodes with identical input-to-hidden weights in theory would never

separate; so, they all have to begin with different random weights

➛ in practice, all hidden nodes may try to do similar job at first, then gradually

specialize.
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Controlled Nonlinearity

➛ for small weights, each layer implements an approximately linear function,

so multiple layers also implement an approximately linear function.

➛ for large weights, transfer function approximates a step function,

so computation becomes digital and learning becomes very slow.

➛ with typical weight values, two-layer neural network implements a function

which is close to linear, but takes advantage of a limited degree of nonlinearity.
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Limitations of Two-Layer Neural Networks

Some functions are difficult for a 2-layer network to learn.
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For example, this Twin Spirals problem is difficult to learn with a 2-layer network,

but it can be learned using a 3-layer network.
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First Hidden Layer
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Second Hidden Layer
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Network Output
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Adding Hidden Layers

➛ twin spirals can be learned by 3-layer network

➛ first hidden layer learns linearly separable features

➛ second hidden layer combines these to produce more complex features

➛ learning rate and initial weight values must be small

➛ learning can be improved using the Adam optimizer
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Vanishing / Exploding Gradients

➛ training by backpropagation in networks with many layers is difficult

➛ when the weights are small, the differentials become smaller and smaller as

we backpropagate through the layers, and end up having no effect

➛ when the weights are large, the activations in the higher layers may saturate

to extreme values

➛ when the weights are large, the differentials may sometimes get multiplied

twice in succession in places where the transfer function is steep, causing

them to blow up to large values
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Vanishing / Exploding Gradients

Ways to avoid vanishing / exploding gradients:

➛ new activations functions

➛ weight initialization (Week 4)

➛ batch normalization (Week 4)

➛ skip connections (Week 4)

➛ long short term memory (LSTM) (Week 5)
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Activation Functions (6.3)
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Sigmoid Rectified Linear Unit (ReLU)

-4 -2 0 2 4
-2

-1

0

1

2

3

4

-4 -2 0 2 4
-2

-1

0

1

2

3

4

Hyperbolic Tangent Scaled Exponential Linear Unit (SELU)
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Activation Functions

➛ sigmoid and hyperbolic tangent traditionally used for 2-layer networks,

but suffer from vanishing gradient problem in deeper networks.

➛ rectified linear units (ReLUs) are popular for deep networks

(including convolutional networks); gradients will not vanish

because derivative is either 0 or 1.
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