
COMP9444: Neural Networks and

Deep Learning
Week 8b. Deep Reinforcement Learning

Alan Blair

School of Computer Science and Engineering

October 30, 2023

Outline

➛ History of Reinforcement Learning

➛ Deep Q-Learning for Atari Games

➛ Actor-Critic

➛ Asynchronous Advantage Actor Critic (A3C)

2

Reinforcement Learning Timeline

➛ model-free methods

→ 1961 MENACE tic-tac-toe (Donald Michie)

→ 1986 TD(λ) (Rich Sutton)

→ 1989 TD-Gammon (Gerald Tesauro)

→ 2015 Deep Q Learning for Atari Games

→ 2016 A3C (Mnih et al.)

→ 2017 OpenAI Evolution Strategies (Salimans et al.)

➛ methods relying on a world model

→ 1959 Checkers (Arthur Samuel)

→ 1997 TD-leaf (Baxter et al.)

→ 2009 TreeStrap (Veness et al.)

→ 2016 Alpha Go (Silver et al.)

3

MENACE

Machine Educable Noughts And Crosses Engine

Donald Michie, 1961

4

MENACE

5

Game Tree (2-player, deterministic)

XX

XX

X

X

X

XX

MAX (X)

MIN (O)

X X

O

O

OX O

O

O O

O OO

MAX (X)

X OX OX O X

X X

X

X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL

XX

−1 0 +1Utility

6

Martin Gardner and HALO

7

Hexapawn Boxes

8

Reinforcement Learning with BOXES

➛ this BOXES algorithm was later adapted to learn more general tasks such as

Pole Balancing, and helped lay the foundation for the modern field of

Reinforcement Learning

➛ for various reasons, interest in Reinforcement Learning faded in the late 70’s

and early 80’s, but was revived in the late 1980’s, largely through the work of

Richard Sutton

➛ Gerald Tesauro applied Sutton’s TD-Learning algorithm to the game of

Backgammon in 1989

9

Deep Q-Learning for Atari Games

➛ end-to-end learning of values Q(s, a) from pixels s

➛ input state s is stack of raw pixels from last 4 frames

→ 8-bit RGB images, 210 × 160 pixels

➛ output is Q(s, a) for 18 joystick/button positions

➛ reward is change in score for that timestep

10

Deep Q-Network

11

Q-Learning

Q(st, at)← Q(st, at) + η [rt + γ max
b

Q(st+1, b)−Q(st, at)]

➛ with lookup table, Q-learning is guaranteed to eventually converge

➛ for serious tasks, there are too many states for a lookup table

➛ instead, Qw(s, a) is parametrized by weights w, which get updated so as to

minimize
[rt + γ max

b
Qw(st+1, b)−Qw(st, at)]

2

→ note: gradient is applied only to Qw(st, at), not to Qw(st+1, b)

➛ this works well for some tasks, but is challenging for Atari games, partly due

to temporal correlations between samples

(i.e. large number of similar situations occurring one after the other)

12

Deep Q-Learning with Experience Replay

➛ choose actions using current Q function (ε-greedy)

➛ build a database of experiences (st, at, rt, st+1)

➛ sample asynchronously from database and apply update, to minimize

[rt + γ max
b

Qw(st+1, b)−Qw(st, at)]
2

➛ removes temporal correlations by sampling from variety of game situations in

random order

➛ makes it easier to parallelize the algorithm on multiple GPUs

13

DQN Results for Atari Games

14

DQN Improvements

➛ Prioritised Replay

→ weight experience according to surprise

➛ Double Q-Learning

→ current Q-network w is used to select actions

→ older Q-network w is used to evaluate actions

➛ Advantage Function

→ action-independent value function Vu(s)
→ action-dependent advantage function Aw(s, a)

Q(s, a) = Vu(s) +Aw(s, a)

15

Prioritised Replay

➛ instead of sampling experiences uniformly, store them in a priority queue

according to the DQN error

| rt + γ max
b

Qw(st+1, b)−Qw(st, at)|

➛ this ensures the system will concentrate more effort on situations where the

Q value was “surprising” (in the sense of being far away from what was

predicted)

16

Double Q-Learning

➛ if the same weights w are used to select actions and evaluate actions, this

can lead to a kind of confirmation bias

➛ could maintain two sets of weights w and w, with one used for selection and

the other for evaluation (then swap their roles)

➛ in the context of Deep Q-Learning, a simpler approach is to use the current

“online” version of w for selection, and an older “target” version w for

evaluation; we therefore minimize

[rt + γ Qw(st+1, argmaxbQw(st+1, b))−Qw(st, at)]
2

➛ a new version of w is periodically calculated from the distributed values of w,

and this w is broadcast to all processors.

17

Advantage Function

The Q Function Qπ(s, a) can be written as a sum of the value function V π(s) plus

an advantage function Aπ(s, a) = Qπ(s, a)− V π(s)

Aπ(s, a) represents the advantage (or disadvantage) of taking action a in state s,

compared to taking the action preferred by the current policy π. We can learn

approximations for these two components separately:

Q(s, a) = Vu(s) +Aw(s, a)

Note that actions can be selected just using Aw(s, a), because

argmaxbQ(st+1, b) = argmaxbAw(st+1, b)

18

Policy Gradients and Actor-Critic

Recall:

∇θ fitness(πθ) = Eπθ
[Qπθ (s, a)∇θ log πθ(a|s)]

For non-episodic games, we cannot easily find a good estimate for Qπθ(s, a).

One approach is to consider a family of Q-Functions Qw determined by

parameters w (different from θ) and learn w so that Qw approximates Qπθ ,

at the same time that the policy πθ itself is also being learned.

This is known as an Actor-Critic approach because the policy determines the

action, while the Q-Function estimates how good the current policy is, and thereby

plays the role of a critic.

19

Actor Critic Algorithm

for each trial

sample a0 from π(a|s0)

for each timestep t do

sample reward rt from R(r | st, at)

sample next state st+1 from δ(s | st, at)

sample action at+1 from π(a | st+1)

dE
dQ

= −[rt + γ Qw(st+1, at+1)−Qw(st, at)]

θ ← θ + ηθ Qw(st, at)∇θ log πθ(at | st)

w ← w − ηw
dE
dQ
∇w Qw(st, at)

end

end

20

Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baseline b could be subtracted from

rtotal
θ ← θ + η(rtotal − b)∇θ log πθ(at|st)

In the actor-critic framework, rtotal is replaced by Q(st, at)

θ ← θ + ηθ Q(st, at)∇θ log πθ(at | st)

We can also subtract a baseline from Q(st, at). This baseline must be independent

of the action at, but it could be dependent on the state st. A good choice of

baseline is the value function Vu(s), in which case the Q function is replaced by

the advantage function

Aw(s, a) = Q(s, a)− Vu(s)

21

Asynchronous Advantage Actor Critic

➛ use policy network to choose actions

➛ learn a parameterized Value function Vu(s) by TD-Learning

➛ estimate Q-value by n-step sample

Q(st, at) = rt+1 + γ rt+2 + . . .+ γ n−1rt+n + γ nVu(st+n)

➛ update policy πθ by

θ ← θ + ηθ [Q(st, at)− Vu(st)]∇θ log πθ(at | st)

➛ update Value function my minimizing

[Q(st, at)− Vu(st)]
2

22

KL-Divergence

➛ KL-Divergence is used in some policy-based deep reinforcement learning

algorithms such as Trust Region Policy Optimization (TRPO)

(but we will not cover these in detail).

➛ KL-Divergence is also important in other areas of Deep Learning, such as

Variational Autoencoders.

23

Other Deep RL Approaches

➛ augment A3C with unsupervised auxiliary tasks

➛ encourage exploration, increased entropy

➛ encourage actions for which the rewards are less predictable

➛ concentrate on state features from which the preceding action is more

predictable

➛ transfer learning (between tasks)

➛ inverse reinforcement learning (infer rewards from policy)

➛ hierarchical RL

➛ multi-agent RL

24

References

➛ David Silver, Deep Reinforcement Learning Tutorial,

http://icml.cc/2016/tutorials/deep rl tutorial.pdf

➛ A Brief Survey of Deep Reinforcement Learning,

https://arxiv.org/abs/1708.05866

➛ Asynchronous Methods for Deep Reinforcement Learning,

https://arxiv.org/abs/1602.01783

➛ Evolution Strategies as a Scalable Alternative to Reinforcement Learning,

https://arxiv.org/abs/1703.03864

➛ Eric Jang, Beginner’s Guide to Variational Methods,

http://blog.evjang.com/2016/08/variational-bayes.html

25

