

COMP9444: Neural Networks and Deep Learning

Week 8b. Deep Reinforcement Learning

Alan Blair School of Computer Science and Engineering October 30, 2023

Outline

- ➛ History of Reinforcement Learning
- \rightarrow Deep Q-Learning for Atari Games
- ➛ Actor-Critic
- ➛ Asynchronous Advantage Actor Critic (A3C)

Reinforcement Learning Timeline

- \rightarrow model-free methods
	- \rightarrow 1961 MENACE tic-tac-toe (Donald Michie)
	- \rightarrow 1986 TD(λ) (Rich Sutton)
	- \rightarrow 1989 TD-Gammon (Gerald Tesauro)
	- \rightarrow 2015 Deep Q Learning for Atari Games
	- \rightarrow 2016 A3C (Mnih et al.)
	- \rightarrow 2017 OpenAI Evolution Strategies (Salimans et al.)
- \rightarrow methods relying on a world model
	- \rightarrow 1959 Checkers (Arthur Samuel)
	- \rightarrow 1997 TD-leaf (Baxter et al.)
	- \rightarrow 2009 TreeStrap (Veness et al.)
	- \rightarrow 2016 Alpha Go (Silver et al.)

MENACE

Machine Educable Noughts And Crosses Engine Donald Michie, 1961

MENACE

Game Tree (2-player, deterministic)

Martin Gardner and HALO

Hexapawn Boxes

Reinforcement Learning with BOXES

- \rightarrow this BOXES algorithm was later adapted to learn more general tasks such as Pole Balancing, and helped lay the foundation for the modern field of Reinforcement Learning
- \rightarrow for various reasons, interest in Reinforcement Learning faded in the late 70's and early 80's, but was revived in the late 1980's, largely through the work of Richard Sutton
- \rightarrow Gerald Tesauro applied Sutton's TD-Learning algorithm to the game of Backgammon in 1989

Deep Q-Learning for Atari Games

- \rightarrow end-to-end learning of values $Q(s, a)$ from pixels s
- \rightarrow input state s is stack of raw pixels from last 4 frames
	- \rightarrow 8-bit RGB images, 210×160 pixels
- \rightarrow output is $Q(s, a)$ for 18 joystick/button positions
- \rightarrow reward is change in score for that timestep

Deep Q-Network

Q-Learning

$$
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta \left[r_t + \gamma \max_b Q(s_{t+1}, b) - Q(s_t, a_t) \right]
$$

- \rightarrow with lookup table, Q-learning is guaranteed to eventually converge
- \rightarrow for serious tasks, there are too many states for a lookup table
- \rightarrow instead, $Q_w(s, a)$ is parametrized by weights w, which get updated so as to minimize

$$
[r_t + \gamma \max_b Q_w(s_{t+1}, b) - Q_w(s_t, a_t)]^2
$$

 \rightarrow note: gradient is applied only to $\bar{Q}_w(s_t,a_t)$, not to $\bar{Q}_w(s_{t+1},b)$

 \rightarrow this works well for some tasks, but is challenging for Atari games, partly due to temporal correlations between samples (i.e. large number of similar situations occurring one after the other)

Deep Q-Learning with Experience Replay

- \rightarrow choose actions using current Q function (ε -greedy)
- \rightarrow build a database of experiences (s_t, a_t, r_t, s_{t+1})
- \rightarrow sample asynchronously from database and apply update, to minimize

$$
[r_t + \gamma \max_b Q_w(s_{t+1}, b) - Q_w(s_t, a_t)]^2
$$

- \rightarrow removes temporal correlations by sampling from variety of game situations in random order
- \rightarrow makes it easier to parallelize the algorithm on multiple GPUs

DQN Results for Atari Games

DQN Improvements

- \rightarrow Prioritised Replay
	- \rightarrow weight experience according to surprise
- ➛ Double Q-Learning
	- \rightarrow current Q-network w is used to *select* actions
	- \rightarrow older Q-network \overline{w} is used to *evaluate* actions
- \rightarrow Advantage Function
	- \rightarrow *action-independent* value function $V_u(s)$
	- \rightarrow *action-dependent* advantage function $A_w(s, a)$

$$
Q(s, a) = V_u(s) + A_w(s, a)
$$

Prioritised Replay

 \rightarrow instead of sampling experiences uniformly, store them in a priority queue according to the DQN error

$$
|r_t + \gamma \max_b Q_w(s_{t+1}, b) - Q_w(s_t, a_t)|
$$

 \rightarrow this ensures the system will concentrate more effort on situations where the Q value was "surprising" (in the sense of being far away from what was predicted)

Double Q-Learning

- \rightarrow if the same weights w are used to select actions and evaluate actions, this can lead to a kind of confirmation bias
- \rightarrow could maintain two sets of weights w and \overline{w} , with one used for selection and the other for evaluation (then swap their roles)
- \rightarrow in the context of Deep Q-Learning, a simpler approach is to use the current "online" version of w for selection, and an older "target" version \overline{w} for evaluation; we therefore minimize

$$
[r_t + \gamma Q_{\overline{w}}(s_{t+1}, \operatorname{argmax}_b Q_w(s_{t+1}, b)) - Q_w(s_t, a_t)]^2
$$

 \rightarrow a new version of \overline{w} is periodically calculated from the distributed values of w, and this \overline{w} is broadcast to all processors.

Advantage Function

The Q Function $Q^{\pi}(s,a)$ can be written as a sum of the value function $V^{\pi}(s)$ plus an *advantage function* $A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$

 $A^{\pi}(s,a)$ represents the advantage (or disadvantage) of taking action a in state $s,$ compared to taking the action preferred by the current policy π . We can learn approximations for these two components separately:

$$
Q(s, a) = V_u(s) + A_w(s, a)
$$

Note that actions can be selected just using $A_w(s, a)$, because

$$
\mathrm{argmax}_b \, Q(s_{t+1},b) = \mathrm{argmax}_b \, A_w(s_{t+1},b)
$$

Policy Gradients and Actor-Critic

Recall:

$$
\nabla_{\theta} \text{ fitness}(\pi_{\theta}) = \mathbf{E}_{\pi_{\theta}}[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)]
$$

For non-episodic games, we cannot easily find a good estimate for $Q^{\pi\theta}(s, a)$.

One approach is to consider a family of Q-Functions Q_w determined by parameters w (different from θ) and learn w so that Q_w approximates $Q^{\pi_{\theta}}$. at the same time that the policy π_{θ} itself is also being learned.

This is known as an *Actor-Critic* approach because the policy determines the action, while the Q-Function estimates how good the current policy is, and thereby plays the role of a critic.

Actor Critic Algorithm

for each trial sample a_0 *from* $\pi(a|s_0)$ *for each timestep* t *do* $\bm{\mathsf{s}}$ ample reward r_t from $\mathcal{R}(r \, | \, s_t, a_t)$ \boldsymbol{s} ample next state s_{t+1} from $\delta(s\,|\, s_t, a_t)$ *sample action* a_{t+1} *from* $\pi(a \mid s_{t+1})$ $\frac{dE}{dQ} = -[r_t + \gamma Q_w(s_{t+1}, a_{t+1}) - Q_w(s_t, a_t)]$ $\theta \leftarrow \theta + \eta_\theta \, Q_w(s_t, a_t) \nabla_\theta \log \pi_\theta(a_t \, | \, s_t)$ $w \leftarrow w - \eta_w \frac{dE}{dQ} \nabla_w Q_w(s_t, a_t)$ *end end*

Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baseline b could be subtracted from $r_{\rm total}$

 $\theta \leftarrow \theta + \eta (r_{\text{total}} - b) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$

In the actor-critic framework, r_{total} is replaced by $\mathit{Q}(s_t, a_t)$

$$
\theta \leftarrow \theta + \eta_{\theta} Q(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)
$$

We can also subtract a baseline from $Q(s_t,a_t)$. This baseline must be independent of the action a_t , but it could be dependent on the state $s_t.$ A good choice of baseline is the value function $V_u(s)$, in which case the Q function is replaced by the advantage function

$$
A_w(s, a) = Q(s, a) - V_u(s)
$$

Asynchronous Advantage Actor Critic

- \rightarrow use policy network to choose actions
- \rightarrow learn a parameterized Value function $V_u(s)$ by TD-Learning
- \rightarrow estimate Q-value by n-step sample

$$
Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \ldots + \gamma^{n-1} r_{t+n} + \gamma^n V_u(s_{t+n})
$$

 \rightarrow update policy π_{θ} by

$$
\theta \leftarrow \theta + \eta_{\theta} \left[Q(s_t, a_t) - V_u(s_t) \right] \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)
$$

 \rightarrow update Value function my minimizing

$$
[Q(s_t, a_t) - V_u(s_t)]^2
$$

KL-Divergence

- \rightarrow KL-Divergence is used in some policy-based deep reinforcement learning algorithms such as Trust Region Policy Optimization (TRPO) (but we will not cover these in detail).
- \rightarrow KL-Divergence is also important in other areas of Deep Learning, such as Variational Autoencoders.

Other Deep RL Approaches

- \rightarrow augment A3C with unsupervised auxiliary tasks
- \rightarrow encourage exploration, increased entropy
- \rightarrow encourage actions for which the rewards are less predictable
- \rightarrow concentrate on state features from which the preceding action is more predictable
- \rightarrow transfer learning (between tasks)
- \rightarrow inverse reinforcement learning (infer rewards from policy)
- \rightarrow hierarchical RI
- \rightarrow multi-agent RL

References

- ➛ David Silver, Deep Reinforcement Learning Tutorial, http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf
- ➛ A Brief Survey of Deep Reinforcement Learning, https://arxiv.org/abs/1708.05866
- ➛ Asynchronous Methods for Deep Reinforcement Learning, https://arxiv.org/abs/1602.01783
- \rightarrow Evolution Strategies as a Scalable Alternative to Reinforcement Learning, https://arxiv.org/abs/1703.03864
- \rightarrow Eric Jang, Beginner's Guide to Variational Methods, http://blog.evjang.com/2016/08/variational-bayes.html

