
COMP9444: Neural Networks and

Deep Learning
Week 8b. Deep Reinforcement Learning

Alan Blair

School of Computer Science and Engineering

October 30, 2023



Outline

➛ History of Reinforcement Learning

➛ Deep Q-Learning for Atari Games

➛ Actor-Critic

➛ Asynchronous Advantage Actor Critic (A3C)
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Reinforcement Learning Timeline

➛ model-free methods

→ 1961 MENACE tic-tac-toe (Donald Michie)

→ 1986 TD(λ) (Rich Sutton)

→ 1989 TD-Gammon (Gerald Tesauro)

→ 2015 Deep Q Learning for Atari Games

→ 2016 A3C (Mnih et al.)

→ 2017 OpenAI Evolution Strategies (Salimans et al.)

➛ methods relying on a world model

→ 1959 Checkers (Arthur Samuel)

→ 1997 TD-leaf (Baxter et al.)

→ 2009 TreeStrap (Veness et al.)

→ 2016 Alpha Go (Silver et al.)

3



MENACE

Machine Educable Noughts And Crosses Engine

Donald Michie, 1961
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MENACE
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Game Tree (2-player, deterministic)
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Martin Gardner and HALO
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Hexapawn Boxes
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Reinforcement Learning with BOXES

➛ this BOXES algorithm was later adapted to learn more general tasks such as

Pole Balancing, and helped lay the foundation for the modern field of

Reinforcement Learning

➛ for various reasons, interest in Reinforcement Learning faded in the late 70’s

and early 80’s, but was revived in the late 1980’s, largely through the work of

Richard Sutton

➛ Gerald Tesauro applied Sutton’s TD-Learning algorithm to the game of

Backgammon in 1989
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Deep Q-Learning for Atari Games

➛ end-to-end learning of values Q(s, a) from pixels s

➛ input state s is stack of raw pixels from last 4 frames

→ 8-bit RGB images, 210 × 160 pixels

➛ output is Q(s, a) for 18 joystick/button positions

➛ reward is change in score for that timestep
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Deep Q-Network
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Q-Learning

Q(st, at)← Q(st, at) + η [ rt + γ max
b

Q(st+1, b)−Q(st, at)]

➛ with lookup table, Q-learning is guaranteed to eventually converge

➛ for serious tasks, there are too many states for a lookup table

➛ instead, Qw(s, a) is parametrized by weights w, which get updated so as to

minimize
[ rt + γ max

b
Qw(st+1, b)−Qw(st, at)]

2

→ note: gradient is applied only to Qw(st, at), not to Qw(st+1, b)

➛ this works well for some tasks, but is challenging for Atari games, partly due

to temporal correlations between samples

(i.e. large number of similar situations occurring one after the other)
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Deep Q-Learning with Experience Replay

➛ choose actions using current Q function (ε-greedy)

➛ build a database of experiences (st, at, rt, st+1)

➛ sample asynchronously from database and apply update, to minimize

[ rt + γ max
b

Qw(st+1, b)−Qw(st, at)]
2

➛ removes temporal correlations by sampling from variety of game situations in

random order

➛ makes it easier to parallelize the algorithm on multiple GPUs
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DQN Results for Atari Games
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DQN Improvements

➛ Prioritised Replay

→ weight experience according to surprise

➛ Double Q-Learning

→ current Q-network w is used to select actions

→ older Q-network w is used to evaluate actions

➛ Advantage Function

→ action-independent value function Vu(s)
→ action-dependent advantage function Aw(s, a)

Q(s, a) = Vu(s) +Aw(s, a)
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Prioritised Replay

➛ instead of sampling experiences uniformly, store them in a priority queue

according to the DQN error

| rt + γ max
b

Qw(st+1, b)−Qw(st, at)|

➛ this ensures the system will concentrate more effort on situations where the

Q value was “surprising” (in the sense of being far away from what was

predicted)
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Double Q-Learning

➛ if the same weights w are used to select actions and evaluate actions, this

can lead to a kind of confirmation bias

➛ could maintain two sets of weights w and w, with one used for selection and

the other for evaluation (then swap their roles)

➛ in the context of Deep Q-Learning, a simpler approach is to use the current

“online” version of w for selection, and an older “target” version w for

evaluation; we therefore minimize

[ rt + γ Qw(st+1, argmaxbQw(st+1, b))−Qw(st, at)]
2

➛ a new version of w is periodically calculated from the distributed values of w,

and this w is broadcast to all processors.
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Advantage Function

The Q Function Qπ(s, a) can be written as a sum of the value function V π(s) plus

an advantage function Aπ(s, a) = Qπ(s, a)− V π(s)

Aπ(s, a) represents the advantage (or disadvantage) of taking action a in state s,

compared to taking the action preferred by the current policy π. We can learn

approximations for these two components separately:

Q(s, a) = Vu(s) +Aw(s, a)

Note that actions can be selected just using Aw(s, a), because

argmaxbQ(st+1, b) = argmaxbAw(st+1, b)
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Policy Gradients and Actor-Critic

Recall:

∇θ fitness(πθ) = Eπθ
[Qπθ (s, a)∇θ log πθ(a|s) ]

For non-episodic games, we cannot easily find a good estimate for Qπθ(s, a).

One approach is to consider a family of Q-Functions Qw determined by

parameters w (different from θ) and learn w so that Qw approximates Qπθ ,

at the same time that the policy πθ itself is also being learned.

This is known as an Actor-Critic approach because the policy determines the

action, while the Q-Function estimates how good the current policy is, and thereby

plays the role of a critic.
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Actor Critic Algorithm

for each trial

sample a0 from π(a|s0)

for each timestep t do

sample reward rt from R(r | st, at)

sample next state st+1 from δ(s | st, at)

sample action at+1 from π(a | st+1)

dE
dQ

= −[rt + γ Qw(st+1, at+1)−Qw(st, at)]

θ ← θ + ηθ Qw(st, at)∇θ log πθ(at | st)

w ← w − ηw
dE
dQ
∇w Qw(st, at)

end

end
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Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baseline b could be subtracted from

rtotal
θ ← θ + η(rtotal − b)∇θ log πθ(at|st)

In the actor-critic framework, rtotal is replaced by Q(st, at)

θ ← θ + ηθ Q(st, at)∇θ log πθ(at | st)

We can also subtract a baseline from Q(st, at). This baseline must be independent

of the action at, but it could be dependent on the state st. A good choice of

baseline is the value function Vu(s), in which case the Q function is replaced by

the advantage function

Aw(s, a) = Q(s, a)− Vu(s)
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Asynchronous Advantage Actor Critic

➛ use policy network to choose actions

➛ learn a parameterized Value function Vu(s) by TD-Learning

➛ estimate Q-value by n-step sample

Q(st, at) = rt+1 + γ rt+2 + . . .+ γ n−1rt+n + γ nVu(st+n)

➛ update policy πθ by

θ ← θ + ηθ [Q(st, at)− Vu(st)]∇θ log πθ(at | st)

➛ update Value function my minimizing

[Q(st, at)− Vu(st)]
2
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KL-Divergence

➛ KL-Divergence is used in some policy-based deep reinforcement learning

algorithms such as Trust Region Policy Optimization (TRPO)

(but we will not cover these in detail).

➛ KL-Divergence is also important in other areas of Deep Learning, such as

Variational Autoencoders.
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Other Deep RL Approaches

➛ augment A3C with unsupervised auxiliary tasks

➛ encourage exploration, increased entropy

➛ encourage actions for which the rewards are less predictable

➛ concentrate on state features from which the preceding action is more

predictable

➛ transfer learning (between tasks)

➛ inverse reinforcement learning (infer rewards from policy)

➛ hierarchical RL

➛ multi-agent RL
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