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Outline

> Autoencoder Networks (14.1)

> Regularized Autoencoders (14.2)

> Stochastic Encoders and Decoders (14.4)
> Generative Models

> Variational Autoencoders (20.10.3)

B unsw



Recall: Encoder Networks
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- identity mapping through a bottleneck

> also called N-M—N task
> used to investigate hidden unit representations
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Autoencoder Networks

“bottleneck™ hidden layer

output layer

input layer
(reconstruction of input layer)

all layers are fully connected but not
drawn

> output is trained to reproduce the input as closely as possible
> activations normally pass through a bottleneck, so the network is forced to

compress the data in some way
> Autoencoders can be used to generate “fake” items, or to automatically
extract abstract features from the input



Autoencoder Networks
output -

decode

hidden

encode

input

If the encoder computes z = f(z) and the decoder computes g(f(z)) then we aim
to minimize some distance function between x and g(f(x))

E = L(z,9(f(x)))



De-Convolutional Encoder for Images

Stride 2 16

CONV 2

Unsupervised Representation Learning with Deep Convolutional Generative
Adversarial Networks (Radford et al., 2016)



Autoencoder as Pretraining

> after an autoencoder is trained, the decoder part can be removed and
replaced with, for example, a classification layer

> this new network can then be trained by backpropagaiton

> the features learned by the autoencoder then serve as initial weights for the
supervised learning task
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Regularized Autoencoders (14.2)

We may include additional loss term(s) in order to force the latent variables to
conform to a certain distribution, or to achieve some other objective.

> Autoencoders with dropout at hidden layer(s)
> Sparse Autoencoders

> Contractive Autoencoders

> Denoising Autoencoders

> Variational Autoencoders

> Wasserstein Autoencoders
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Sparse Autoencoder (14.2.1)

> One way to regularize an autoencoder is to include a penalty term in the loss
function, based on the hidden unit activations.

> This is analagous to the weight decay term we previously used for supervised
learning.

> One popular choice is to penalize the sum of the absolute values of the
activations in the hidden layer

E = L(z,g(f() + A _ |hil
7
> This is sometimes known as L;-regularization (because it involves the

absolute value rather than the square); it can encourage some of the hidden
units to go to zero, thus producing a sparse representation.
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Contractive Autoencoder (14.2.3)

> Another popular penalty term is the Ly-norm of the derivatives of the hidden
units with respect to the inputs

E = L(z,g(f(2)) + AZ V.2 Bl |2

> This forces the model to learn hidden features that do not change much when
the training inputs = are slightly altered.
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Denoising Autoencoder (14.2.2)

Another regularization method, similar to contractive autoencoder, is to add noise
to the inputs, but train the network to recover the original input
repeat:
sample a training item (%)
generate a corrupted version i of z(?)
train to reduce E = L(z®, g(f(%)))
end
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Loss Functions and Probability

> We saw previously how the loss (cost) function at the output of a feedforward
neural network (with parameters #) can be seen as defining a probability
distribution py(x) over the outputs. We then train to maximize the log of the
probability of the target values.

— squared error assumes an underlying Gaussian distribution,
whose mean is the output of the network

— cross entropy assumes a Bernoulli distribution,
with probability equal to the output of the network

— softmax assumes a Boltzmann distribution
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Stochastic Encoders and Decoders (14.4)

> For autoencoders, the decoder can be seen as defining a conditional
probability distribution py(x|z) of output = for a certain value z of the hidden or
“latent” variables.

> In some cases, the encoder can also be seen as defining a conditional
probability distribution ¢, (z|x) of latent variables » based on an input x .
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Generative Models

~ Sometimes, as well as reproducing the training items {z(9}, we also want to
be able to use the decoder to generate new items which are of a similar
“style” to the training items.

- |n other words, we want to be able to choose latent variables > from a
standard Normal distribution p(z), feed these values of z to the decoder, and
have it produce a new item x which is somehow similar to the training items.

> Generative models can be:

— explicit (Variational Autoencoders, Wasserstein Autoencoders)
— implicit (Generative Adversarial Networks)
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Gaussian Distribution (3.9.3)
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Entropy and KL-Divergence

>

>

The entropy of a distribution ¢() is H(q) = /q(@)(—log q(0))de
0

In Information Theory, H(q) is the amount of information (bits) required to
transmit a random sample from distribution ¢()

For a Gaussian distribution,  H(q) = }_log o;

KL-Divergence Diw(q | p) = /eq(g)@og q(0) —log p(0))do

Dx1.(q | p) is the number of extra bits we need to trasmit if we designed a code
for p() but the samples are drawn from ¢() instead.

If p(2) is Standard Normal distribution, minimizing Dk, (q4(2)[p(z))
encourages ¢y4() to center on zero and spread out to approximate p().
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KL-Divergence and Wasserstein Distance

Consider two Gaussian distributions ¢, p with mean p1, 1o and covariance %1, Xo,
respectively. In the case where us = 0, 39 = I, the KL-Divergence between ¢ and
p simplifies to:

1
Dkr(dllp) = 5 [[11]” + Trace(1) — log [£1] — d]

If £1 = diag(o?,...,02) is diagonal, this further simplifies to:
d
1
Dxr(dllp) = 5 [lpal® +) (o7 = 2log(0) — 1)]
i=0

which is minimized when y; = 0and o; = 1 forall 7.
The Wasserstein Distance between ¢ and p is given by

Wa(g,p)® = || — pal|? + Trace(S; + 5z — 2(5150)?)
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Variational Autoencoder (20.10.3)

Instead of producing a single z for each z(9), the encoder (with parameters ¢) can
be made to produce a mean y,,;) and standard deviation o,

This defines a conditional (Gaussian) probability distribution g (z|=®)
We then train the system to maximize

Ez~q¢(z|:c(i))[10gp@(x(i)|z)] - DKL(q¢(Z|$(Z))”p(z))

> the first term enforces that any sample z drawn from the conditional
distribution q¢(z|9g(i)) should, when fed to the decoder, produce somthing

approximating ()
~ the second term encourages q,(z|z(")) to approximate p(z)

~ in practice, the distributions g,(z|2") for various =) will occupy
complementary regions within the overall distribution p(z)
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Variational Autoencoder Digits
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Variational Autoencoder Faces
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Variational Autoencoder

> Variational Autoencoder produces reasonable results
> tends to produce blurry images

> often end up using only a small number of the dimensions available to =

22
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