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Outline

➛ Autoencoder Networks (14.1)

➛ Regularized Autoencoders (14.2)

➛ Stochastic Encoders and Decoders (14.4)

➛ Generative Models

➛ Variational Autoencoders (20.10.3)
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Recall: Encoder Networks
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➛ identity mapping through a bottleneck

➛ also called N–M–N task

➛ used to investigate hidden unit representations
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Autoencoder Networks

➛ output is trained to reproduce the input as closely as possible

➛ activations normally pass through a bottleneck, so the network is forced to

compress the data in some way

➛ Autoencoders can be used to generate “fake” items, or to automatically

extract abstract features from the input
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Autoencoder Networks

If the encoder computes z = f(x) and the decoder computes g(f(x)) then we aim

to minimize some distance function between x and g(f(x))

E = L
(

x, g(f(x))
)
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De-Convolutional Encoder for Images

Unsupervised Representation Learning with Deep Convolutional Generative

Adversarial Networks (Radford et al., 2016)
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Autoencoder as Pretraining

➛ after an autoencoder is trained, the decoder part can be removed and

replaced with, for example, a classification layer

➛ this new network can then be trained by backpropagaiton

➛ the features learned by the autoencoder then serve as initial weights for the

supervised learning task
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Regularized Autoencoders (14.2)

We may include additional loss term(s) in order to force the latent variables to

conform to a certain distribution, or to achieve some other objective.

➛ Autoencoders with dropout at hidden layer(s)

➛ Sparse Autoencoders

➛ Contractive Autoencoders

➛ Denoising Autoencoders

➛ Variational Autoencoders

➛ Wasserstein Autoencoders
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Sparse Autoencoder (14.2.1)

➛ One way to regularize an autoencoder is to include a penalty term in the loss

function, based on the hidden unit activations.

➛ This is analagous to the weight decay term we previously used for supervised

learning.

➛ One popular choice is to penalize the sum of the absolute values of the

activations in the hidden layer

E = L(x, g(f(x)) + λ
∑

i

|hi|

➛ This is sometimes known as L1-regularization (because it involves the

absolute value rather than the square); it can encourage some of the hidden

units to go to zero, thus producing a sparse representation.
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Contractive Autoencoder (14.2.3)

➛ Another popular penalty term is the L2-norm of the derivatives of the hidden

units with respect to the inputs

E = L(x, g(f(x)) + λ
∑

i

||∇x hi||
2

➛ This forces the model to learn hidden features that do not change much when

the training inputs x are slightly altered.
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Denoising Autoencoder (14.2.2)

Another regularization method, similar to contractive autoencoder, is to add noise

to the inputs, but train the network to recover the original input

repeat:

sample a training item x(i)

generate a corrupted version x̃ of x(i)

train to reduce E = L
(

x(i), g(f(x̃))
)

end
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Loss Functions and Probability

➛ We saw previously how the loss (cost) function at the output of a feedforward

neural network (with parameters θ) can be seen as defining a probability

distribution pθ(x) over the outputs. We then train to maximize the log of the

probability of the target values.

→ squared error assumes an underlying Gaussian distribution,

whose mean is the output of the network

→ cross entropy assumes a Bernoulli distribution,

with probability equal to the output of the network

→ softmax assumes a Boltzmann distribution
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Stochastic Encoders and Decoders (14.4)

➛ For autoencoders, the decoder can be seen as defining a conditional

probability distribution pθ(x|z) of output x for a certain value z of the hidden or

“latent” variables.

➛ In some cases, the encoder can also be seen as defining a conditional

probability distribution qφ(z|x) of latent variables z based on an input x .

13



Generative Models

➛ Sometimes, as well as reproducing the training items {x(i)}, we also want to

be able to use the decoder to generate new items which are of a similar

“style” to the training items.

➛ In other words, we want to be able to choose latent variables z from a

standard Normal distribution p(z), feed these values of z to the decoder, and

have it produce a new item x which is somehow similar to the training items.

➛ Generative models can be:

→ explicit (Variational Autoencoders, Wasserstein Autoencoders)

→ implicit (Generative Adversarial Networks)
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Gaussian Distribution (3.9.3)

µ = mean

σ = standard deviation
Pµ,σ(x) =

1√
2πσ

e−(x−µ)2/2σ2
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Entropy and KL-Divergence

➛ The entropy of a distribution q() is H(q) =

∫

θ
q(θ)(− log q(θ))dθ

➛ In Information Theory, H(q) is the amount of information (bits) required to

transmit a random sample from distribution q()

➛ For a Gaussian distribution, H(q) =
∑

i
log σi

➛ KL-Divergence
DKL(q || p) =

∫

θ
q(θ)(log q(θ)− log p(θ))dθ

➛ DKL(q || p) is the number of extra bits we need to trasmit if we designed a code

for p() but the samples are drawn from q() instead.

➛ If p(z) is Standard Normal distribution, minimizing DKL

(

qφ(z)||p(z)
)

encourages qφ() to center on zero and spread out to approximate p().
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KL-Divergence and Wasserstein Distance

Consider two Gaussian distributions q, p with mean µ1, µ2 and covariance Σ1,Σ2,

respectively. In the case where µ2 = 0, Σ2 = I, the KL-Divergence between q and

p simplifies to:

DKL(q||p) =
1

2

[

||µ1||
2 +Trace(Σ1)− log |Σ1| − d

]

If Σ1 = diag(σ2
1 , . . . , σ

2
d) is diagonal, this further simplifies to:

DKL(q||p) =
1

2

[

||µ1||
2 +

d
∑

i=0

(σ2
i − 2 log(σi)− 1)

]

which is minimized when µ1 = 0 and σi = 1 for all i .

The Wasserstein Distance between q and p is given by

W2(q, p)
2 = ||µ1 − µ2||

2 +Trace(Σ1 +Σ2 − 2(Σ1Σ2)
1
2 )
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Variational Autoencoder (20.10.3)

Instead of producing a single z for each x(i), the encoder (with parameters φ) can

be made to produce a mean µz|x(i) and standard deviation σz|x(i)

This defines a conditional (Gaussian) probability distribution qφ(z|x
(i))

We then train the system to maximize

Ez∼qφ(z|x(i))[ log pθ(x
(i)|z) ] − DKL

(

qφ(z|x
(i))||p(z)

)

➛ the first term enforces that any sample z drawn from the conditional

distribution qφ(z|x
(i)) should, when fed to the decoder, produce somthing

approximating x(i)

➛ the second term encourages qφ(z|x
(i)) to approximate p(z)

➛ in practice, the distributions qφ(z|x
(i)) for various x(i) will occupy

complementary regions within the overall distribution p(z)
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Variational Autoencoder Digits
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Variational Autoencoder Digits

1st Epoch 9th Epoch Original
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Variational Autoencoder Faces
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Variational Autoencoder

➛ Variational Autoencoder produces reasonable results

➛ tends to produce blurry images

➛ often end up using only a small number of the dimensions available to z
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