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November 8, 2023 - Generative Models

> Variational Autoencoders (20.10.3)
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- activations normally pass through a bottleneck, so the network is forced to
compress the data in some way

> Autoencoders can be used to generate “fake” items, or to automatically
extract abstract features from the input

output layer
(reconstruction of input layer)

> identity mapping through a bottleneck
> also called N-M-N task
- used to investigate hidden unit representations
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Autoencoder Networks De-Convolutional Encoder for Images
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If the encoder computes 2 = f(x) and the decoder computes g(f(x)) then we aim
to minimize some distance function between x and g(f(x))

E = L(z,g(f(z))) Unsuper\(lsed Representation Learning with Deep Convolutional Generative
Adversarial Networks (Radford et al., 2016)
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Autoencoder as Pretraining Regularized Autoencoders (14.2)

We may include additional loss term(s) in order to force the latent variables to

. . conform to a certain distribution, or to achieve some other objective.
> after an autoencoder is trained, the decoder part can be removed and

replaced with, for example, a classification layer Autoencoders with dropout at hidden layer(s)
Sparse Autoencoders

Contractive Autoencoders

Denoising Autoencoders

Variational Autoencoders

Wasserstein Autoencoders

> this new network can then be trained by backpropagaiton

> the features learned by the autoencoder then serve as initial weights for the
supervised learning task
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Sparse Autoencoder (14.2.1)

> One way to regularize an autoencoder is to include a penalty term in the loss
function, based on the hidden unit activations.

> This is analagous to the weight decay term we previously used for supervised
learning.

> One popular choice is to penalize the sum of the absolute values of the
activations in the hidden layer

E = L(x,g(f(x)) + XY |hil
A
> This is sometimes known as L;-regularization (because it involves the

absolute value rather than the square); it can encourage some of the hidden
units to go to zero, thus producing a sparse representation.
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Denoising Autoencoder (14.2.2)

Another regularization method, similar to contractive autoencoder, is to add noise
to the inputs, but train the network to recover the original input
repeat:
sample a training item z(?)
generate a corrupted version & of 2
train to reduce E = L(z", g(f(2)))
end
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Contractive Autoencoder (14.2.3)

> Another popular penalty term is the Le-norm of the derivatives of the hidden

units with respect to the inputs

E = L(z,9(f(x)) + AZ IV Rl [®

> This forces the model to learn hidden features that do not change much when

the training inputs = are slightly altered.
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Loss Functions and Probability

> We saw previously how the loss (cost) function at the output of a feedforward

neural network (with parameters 6) can be seen as defining a probability
distribution py(z) over the outputs. We then train to maximize the log of the
probability of the target values.

— squared error assumes an underlying Gaussian distribution,
whose mean is the output of the network

— cross entropy assumes a Bernoulli distribution,
with probability equal to the output of the network

— softmax assumes a Boltzmann distribution
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Stochastic Encoders and Decoders (14.4)

> For autoencoders, the decoder can be seen as defining a conditional
probability distribution py(z|z) of output = for a certain value = of the hidden or
“latent” variables.

> In some cases, the encoder can also be seen as defining a conditional
probability distribution ¢4 (z|x) of latent variables » based on an input « .

Gaussian Distribution (3.9.3)
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Generative Models

14

~ Sometimes, as well as reproducing the training items {2V}, we also want to
be able to use the decoder to generate new items which are of a similar
“style” to the training items.

> In other words, we want to be able to choose latent variables =z from a
standard Normal distribution p(z), feed these values of z to the decoder, and
have it produce a new item x which is somehow similar to the training items.

> Generative models can be:

> explicit (Variational Autoencoders, Wasserstein Autoencoders)
— implicit (Generative Adversarial Networks)
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Entropy and KL-Divergence

16

> The entropy of a distribution q() is  H(g) / ¢(0)(~ log q(0))d0
0

> In Information Theory, H(q) is the amount of information (bits) required to
transmit a random sample from distribution ¢()

> For a Gaussian distribution, H(g) = log o;
i

> KL-Divergence D (¢ p) = /‘g‘q(a)(log q(0) — log p(6))do

> Dx1.(¢ | p) is the number of extra bits we need to trasmit if we designed a code
for p() but the samples are drawn from ¢() instead.

> If p(z) is Standard Normal distribution, minimizing Dxr, (¢s(z)[p())
encourages ¢, () to center on zero and spread out to approximate p().
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KL-Divergence and Wasserstein Distance

Consider two Gaussian distributions ¢, p with mean 1, us and covariance 31, Yo,
respectively. In the case where s = 0, X5 = I, the KL-Divergence between ¢ and
p simplifies to:

1
Dxw(qllp) = 5 [[|pa]|* 4+ Trace(S1) — log [%1] — d |

If £y = diag(o?,...,02) is diagonal, this further simplifies to:
d

1
Dxw(dllp) = 5 [l |* + (07 — 2log(o3) — 1)]
=0
which is minimized when pi; =0and o; = 1 for all 4.
The Wasserstein Distance between ¢ and p is given by

1
Wa(q,p)* = |1 — p2l|* + Trace(S) + Bz — 2(31352)2)

Variational Autoencoder Digits

round 65536: train in latent space
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Variational Autoencoder (20.10.3)

Instead of producing a single = for each z(%), the encoder (with parameters ¢) can
be made to produce a mean NG and standard deviation e

This defines a conditional (Gaussian) probability distribution g (z|2(")
We then train the system to maximize

E. (o) l0g po(z@2)] — Dxr(gg(2l2D)|p(2))

> the first term enforces that any sample z drawn from the conditional
distribution ¢4(2|2(?) should, when fed to the decoder, produce somthing
approximating =

~ the second term encourages g, (z|2(")) to approximate p(z)

- in practice, the distributions g, (z|2(") for various =) will occupy
complementary regions within the overall distribution p(z)
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Variational Autoencoder Digits
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Variational Autoencoder Faces
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Variational Autoencoder

- Variational Autoencoder produces reasonable results
> tends to produce blurry images

> often end up using only a small number of the dimensions available to =
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