

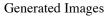
COMP9444: Neural Networks and Deep Learning

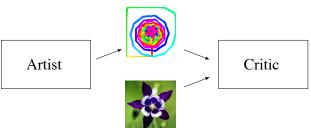
Week 9b. Adversarial Training

Alan Blair

School of Computer Science and Engineering November 8, 2023

Artist-Critic Co-Evolution





Real Images

- the Critic into thinking that the generated images are real.
- → Artist is rewarded for fooling → Critic is rewarded for distinguishing real images from those generated by the Artist.

Outline

- → Artist-Critic Co-Evolution
- → Co-Evolution Paradigms
- → Blind Watchmaker (GP Artist, Human Critic)
- → Evolutonary Art (GP Artist, GP or NN Critic)
- → Generative Adversarial Networks (CNN Artist, CNN Critic)

Artist-Critic Co-Evolution

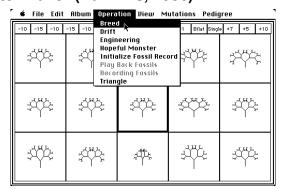
"The creative act is not performed by the artist alone; the spectator brings the work in contact with the external world by deciphering and interpreting its inner qualifications and thus adds his contribution to the creative act."

- Marcel Duchamp

Co-Evolution Paradigms

Artist	Critic	Method	Reference
Biomorph	Human	Blind Watchmaker	(Dawkins, 1986)
GP	Human	Interactive Evolution	(Sims, 1991)
CPPN	Human	PicBreeder	(Secretan, 2011)
CA	Human	EvoEco	(Kowaliw, 2012)
GP	SOM	Artificial Creativity Computational Aesthetics Evolutionary Art Aesthetic Learning	(Saunders, 2001)
GP	NN		(Machado, 2008)
Agents	NN		(Greenfield, 2009)
GP	NN		(Li & Hu, 2010)
HERCL	HERCL	Co-Evolving Line Drawings	(Vickers, 2017)
HERCL	DCNN	HERCL Function/CNN	(Soderlund, 2018)
DCNN	DCNN	Generative Adversarial Nets	(Goodfellow, 2014)
DCNN	DCNN	Plug & Play Generative Nets	(Nguyen, 2016)

Blind Watchmaker (Dawkins, 1986)



- → the Human is presented with 15 images
- → the chosen image(s) are used to breed the next generation

Blind Watchmaker Biomorphs

Interactive Evolution (Sims, 1991)

- → Artist = Genetic Program (GP)
 - \rightarrow used as function to compute R,G,B values for each pixel x,y
- → Critic = Human

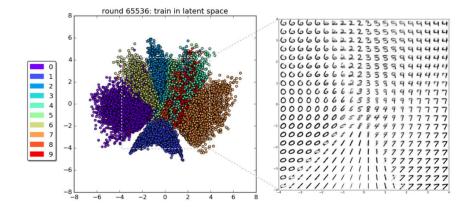
UNSW

PicBreeder Examples

PicBreeder (Secretan, 2011)

- → Artist = Convolutional Pattern Producing Neural Network (CPPN)
- → Interactive Web site (picbreeder.org) where you can choose existing individual and use it for further breeding
- → Interactive Evolution is cool, but it may require a lot of work from the Human Can the Human be replaced by an automated Critic?

Variational Autoencoder Digits



Variational Autoencoder Faces

Generative Adversarial Networks

Generator (Artist) G_{θ} and Discriminator (Critic) D_{ψ} are both Deep Convolutional Neural Networks.

Generator $G_{\theta}: z \mapsto x$, with parameters θ , generates an image x from latent variables z (sampled from a standard Normal distribution).

Discriminator $D_{\psi}: x \mapsto D_{\psi}(x) \in (0,1)$, with parameters ψ , takes an image x and estimates the probability of the image being real.

Generator and Discriminator play a 2-player zero-sum game to compute:

$$\min_{\theta} \max_{\psi} \left(\mathbf{E}_{x \sim p_{\text{data}}} \left[\log D_{\psi}(x) \right] + \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(1 - D_{\psi}(G_{\theta}(z)) \right) \right] \right)$$

Discriminator tries to maximize the bracketed expression, Generator tries to minimize it.

Generative Adversarial Networks

Alternate between:

Gradient ascent on Discriminator:

$$\max_{\psi} \left(\mathbf{E}_{x \sim p_{\text{data}}} \left[\log D_{\psi}(x) \right] + \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(1 - D_{\psi}(G_{\theta}(z)) \right) \right] \right)$$

Gradient descent on Generator, using:

$$\min_{\theta} \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(1 - D_{\psi}(G_{\theta}(z)) \right) \right]$$

13

Generative Adversarial Networks

Alternate between:

Gradient ascent on Discriminator:

$$\max_{\psi} \left(\mathbf{E}_{x \sim p_{\text{data}}} \left[\log D_{\psi}(x) \right] + \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(1 - D_{\psi}(G_{\theta}(z)) \right) \right] \right)$$

Gradient descent on Generator, using:

$$- \min_{\theta} \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(1 - D_{\psi}(G_{\theta}(z)) \right) \right]$$

This formula puts too much emphasis on images that are correctly classified. Better to do gradient ascent on Generator, using:

$$\max_{\theta} \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(D_{\psi}(G_{\theta}(z)) \right) \right]$$

This puts more emphasis on the images that are wrongly classified.

Generative Adversarial Networks

GAN properties:

- ightharpoonup one network aims to produces the full range of images x, with different values for the latent variables z
- differentials are backpropagated through the Discriminator network and into the Generator network
- compared to previous approaches, the images produced are much more realistic!

UNSW

Generative Adversarial Networks

repeat:

for k steps do

sample minibatch of m latent samples $\{z^{(1)},\ldots,z^{(m)}\}$ from p(z) sample minibatch of m training items $\{x^{(1)},\ldots,x^{(m)}\}$ update Discriminator by gradient ascent on ψ :

$$\nabla_{\psi} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\psi}(x^{(i)}) + \log \left(1 - D_{\psi}(G_{\theta}(z^{(i)})) \right) \right]$$

end for

sample minibatch of m latent samples $\{z^{(1)},\dots,z^{(m)}\}$ from p(z) update Generator by gradient ascent on θ :

$$\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log \left(D_{\psi}(G_{\theta}(z^{(i)})) \right)$$

end repeat

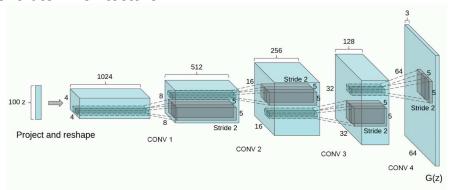
GAN Convolutional Architectures

- \rightarrow normalize images to between -1 and +1
- → replace pooling layers with:
 - → strided convolutions (Discriminator)
 - → fractional-strided convolutions (Generator)
- → use BatchNorm in both Generator and Discriminator
- → remove fully connected hidden layers for deeper architectures
- → use tanh at output layer of Generator, ReLU activation in all other layers
- → use LeakyReLU activation for all layers of Discriminator

UNSW

UNSW

Generator Architecture



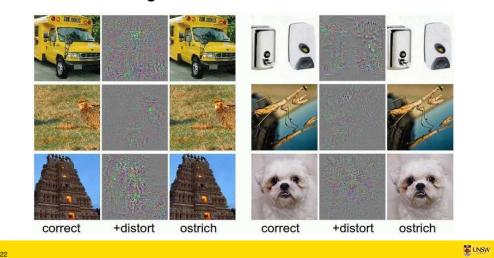
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (Radford et al., 2016)

GAN Generated Bedrooms

UNSW

GAN Generated Faces

Adversarial Training



UNSW

Image Vector Arithmetic

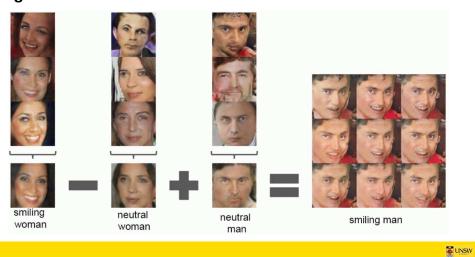
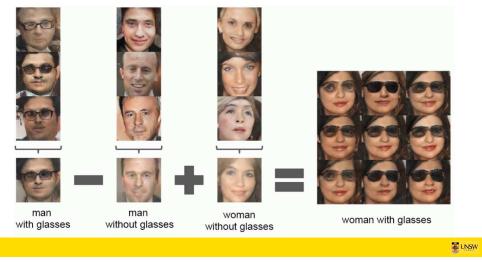


Image Vector Arithmetic



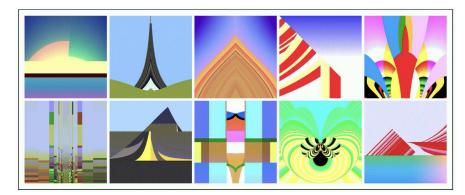
Oscillation and Mode Collapse

- → Due to the coevolutionary dynamics, GANs can sometimes oscillate or get stuck in a mediocre stable state.
 - → oscillation: GAN trains for a long time, generating a variety of images, but quality fails to improve.
 - → *mode collapse*: Generator produces only a small subset of the desired range of images, or converges to a single image (with minor variations).
- → Methods for avoiding mode collapse:
 - → Conditioning Augmentation
 - → Minibatch Features (Fitness Sharing)
 - → Unrolled GANs

UNSW

26

Adversarial Evolution and Deep Learning



https://pickartso.com

References

The GAN Zoo

→ Conditional GAN

→ StackGAN

→ S²-GAN

→ Style-GAN

→ Text-to-Image Synthesis

→ Patch-based Discriminator

→ Context-Encoder for Image Inpainting

→ Plug-and-Play Generative Networks

→ Texture Synthesis with Patch-based GAN

http://dl.ee.cuhk.edu.hk/slides/gan.pdf cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf https://arxiv.org/abs/1612.00005

